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Abstract—Out-of-Distribution (OOD) generalization is a hot
spot issue that covers all unpredictable distributional shifts in
a broad sense, including multiple specific shifting modes in
image classification, such as domain generalization, few-shot
learning, etc. Among these works, a favored assumption is that
a shared invariant representation can be extracted from all
distributions, and serves for inference on novel ones. However,
when suffering from undesired shifts in complex cases, such
invariant assumptions may be violated, resulting in a significant
decrease in performance. To analyze more general shifting
problems, we propose the Joint Shift problem that decomposes
complex distribution shifts into two basic components on domain
and task, namely P (x) and P (y|x). Such a scenario with no
explicit stable component poses a challenge for the existing
invariant learning framework, and we further prove that the
potential dependencies between the two distributions in raw data
can cause inevitable conflicts in the invariant space, leading to
reduced generalization ability. To tackle this problem, we propose
Enforced Decorrelation Alignment (EDA) as a data augmentation
method, which uses causal intervention to separate and randomly
reassemble the domain and task components, and eliminates
their internal correlation in a generated pseudo sample space
for invariant learning. We demonstrate the ubiquity of Joint
Shift in two experimental scenarios with implicit and explicit
task variation and show significant effectiveness of the invariant
features of EDA on Joint Shift generalization.

Index Terms—Out-of-Distribution Generalization, Domain
Shift, Domain Generalization, Invariant Learning.

I. INTRODUCTION

Out-of-distribution (OOD) problems, as a major challenge
for modern machine learning, require models to maintain
high performance in testing scenarios with interaction on
changeable environments, such as medical imaging [1], [2],
robotics [3]–[5] and autonomous driving [6], [7]. It calls for
resistance to distributional shifts that do not conform with the
i.i.d. assumption, i.e., all training and test data are assumed
to be independent and identically distributed. While the strict
characterization of distributional shifts still remains an open
problem, research has been extensively conducted in the field
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Fig. 1. Paradigms for different distribution shifting modes. Red annotations
denote the variable factors of a joint distribution.

of computer vision to formalize some particular shifting modes
on images. For example, domain generalization (DG) aims
to solve a unitary task regardless of the divergence between
training and test distributions. Specifically, it often learns from
a set of related datasets with examples about the same task
and abstract a universal model that is supposed to be available
for novel domains [8], [9]. However, further research [10]–
[12] points out that due to the complexity of OOD shifts, the
tasks involved in various domains may also differ from each
other, so those methods elaborately designed for domain shifts
usually perform even worse than vanilla ones when suffering
from such undesirable task shifts, limiting their versatility.

To analyze more general OOD scenarios, we formulate
the Joint Shift problem, which offers a new perspective to
model complex distribution shifts as a combination of two
basic shifting modes, as shown in Fig.1. By reinspecting the
previous works, we notice that the shift on P (x), known as
covariate shifts, is mainly covered in domain generalization
[13], [14]. On the other hand, task shift related with P (y|x)
has more diversified forms. It can either happen implicitly in
multi-domain image classification due to severe label imbal-
ance [15], [16], correlation shift [10], [17], or explicitly in
multi-task learning [18] or few-shot learning [12], [19], [20].
Accordingly, we decompose a joint distribution into the two
components above: the marginal distribution of input samples
referred to Domain, and the conditional distribution as Task.
Their combination provides a sufficient depiction of a joint
distribution, thus reflecting all possible shifting cases.

Learning from Joint Shift data poses a challenge to the
idea of invariant assumption, which is widely adopted in
multi-task learning [21], [22], few-shot learning (FS) [23]–
[25] and domain generalization [13], [26], [27]. It essentially
suggests that shifting distributions consist of two components:
a variable one reflecting the expected shifting mode, and a
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shared ’invariant’ to represent all remaining factors that are
resistant to all distribution changes. For instance, a possible
invariant representation z for DG can always meet the condi-
tion P (y|z) = P (y|x) in all domains, indicating the shared
feature for the same task. However, when neither domain
or task is stable in the Joint Shift, the invariant cannot be
defined directly to reflect certain semantics in the data. To
make matters worse, this problem also cannot be handled as a
direct combination of the domain and task variation, because
their assumptions of invariant component conflict with each
other, leading to instability of the algorithms in practice. We
prove that such conflict on invariant can only be avoided if
the components of domain and task are fully independent in
the raw data distribution, which cannot always be guaranteed
in practice.

To address this problem, our idea is to extract the invariant
on a pseudo data space where the correlation between domain
and task is actively eliminated. Inspired by Independent Causal
Mechanisms [28]–[30], we suggest that all shifting joint distri-
butions share the same latent invariant semantic, while domain
and task determine its mapping modes to x and y. Our method,
Enforced Decorrelation Alignment (EDA), can be regarded
as independent interventions on both mapping processes. It
explicitly separates the components related to the domain and
task from the input data, and realigns them uniformly through
random swap to synthesize new samples. Thus, their marginal
distributions of domain and task are aligned on a shared
pseudo data space to avoid interference correlations in raw
data, enabling the invariant extraction. The reassembled data,
including novel combinations of sample domains and tasks,
can serve as data augmentation to extend the generalization
boundary of training data, and the invariant representation can
finally be utilized for predictions on unseen distributions.

Our contributions are as follows. (1) We propose and
analyze the Joint Shift problem to model general distribution
variation. (2) We develop Enforced Decorrelation Alignment
(EDA), an algorithm for invariant learning on joint shifting
data for enhanced generalization. (3) We demonstrate the
impact of Joint Shift and verify the effectiveness of our method
on two kinds of experiment scenarios based on DG with
implicit and explicit task shifts .

II. RELATED WORK

A. OOD Generalization

Generally, OOD generalization measures a learner’s perfor-
mance beyond training distribution, including all kinds of non-
i.i.d. test paradigms. In practice, additional assumptions are
often introduced to specify the shifting mode. Some narrow
definitions [13], [31] only focus on the marginal distribu-
tion shift P (x), while in a broader sense [32], [33], more
scenarios are covered, including multi-task, meta-learning,
lifelong learning [34], and their combinations [35], [36],
etc. In our proposed Joint Shift problem, we focus on the
combination of both sample-marginal and sample-conditioned
distribution (also referred to co-variate and semantic in [37]),
which encourages domain-level and task-level generalization
simultaneously.

B. Domain-Level Distribution Shift

Domain is commonly formalized to depict data samples
from different domains with co-variate shift, i.e., Ptrain(X) 6=
Ptest(X). To make domain generalization feasible, an as-
sumption on task invariance, Ptrain(Y |X) = Ptest(Y |X)
is most widely adopted [31], [38], [39]. In practice, some
modifications are also proposed by introducing an learnable
feature extractor Φ(X) = Z, including casual invariance
Ptrain(Y |Z) = Ptest(Y |Z) [17], [40], label-conditioned in-
variance Ptrain(Z|Y ) = Ptest(Z|Y ) [41], [42], etc.

Three branches of implementations are mainly developed.
(1) Invariance Learning: it is the dominant approach with a
direct motivation that the feature independent of seen domains
can also perform well on new ones. It attempts to minimize the
feature divergence between domains, which can be achieved
through regularization metrics [39], adversarial learning [38],
[43], or both [16], [41]. (2) Data Augmentation: it synthesizes
pseudo training samples to enhance data heterogeneity by
interpolation between domains, which can be achieved through
mixing strategy [44], [45], adversarial gradients [46]–[48],
or other specially designed methods [49], [50]. (3) Multi-
task Learning: it provides a quite distinct perspective by
reinterpreting different domains as a family of tasks, so model
ensemble [14], [51], [52] and meta-learning [53]–[55] are
applied under such settings. On the Joint Shift scenario,
our approach mainly integrates invariant learning and data
augmentation, while the multi-task methods are not applicable
due to the coupled shift in the domain and task. Meanwhile,
with the variance of tasks, the existing assumption on invariant
has to be modified in our work.

C. Task-Level Distribution Shift

Task-level generalization refers to a series of works that
estimate the learners’ adaptability on multiple tasks Pi(Y |X),
where the task might be defined implicitly in concept drifting
[56], or explicitly in multi-task learning [18], meta-learning
[57], etc. Both scenarios of task variation are involved in
the experiment of our work: implicit task drift caused by
class imbalance, and explicit shift on few-shot classification,
a supervised meta-learning where tasks are manually defined
by several labeled instances.

In recent studies, cross-domain few-shot [12], [36], also
called multi-domain few-shot [58], are proposed to extend few-
shot learning to data with domain diversity. More specifically,
it collects few-shot tasks from different datasets where the
class label sets are disjoint, while all examples in a single
task are from the same dataset, requiring the learner to extract
common features that are applicable to all domains. This is
not actually a DG setting, because each category only appears
in a single domain. Hence, it lacks the ability to distinguish
the same category across various domains. Regarding this
point, the Joint Shift problem is an extended case of cross-
domain few-shot when the examples in a single task may also
come from different domains. The learning machine needs to
distinguish them regardless of their domain, leading to better
resistance to possible in-task domain shift.
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III. ANALYSIS ON SHIFTING JOINT DISTRIBUTION

This section focuses on defining the Joint Shift problem as a
general model for shifts in supervised learning. By factorizing
a joint distribution into domains and tasks, we decompose all
shifts into two corresponding separate components and adopt
a composite function family as the learning objective to handle
them respectively. In this process, an intermediate variable z
is introduced as an interface between domain and task, which
is supposed to be independent of all shifting components to
ensure the generalization on novel distributions. However, by
analyzing current invariant assumptions, we find it impossible
to extract such identical invariant z from all distributions,
which calls for a new algorithm.

A. Preliminary

The objective in a typical supervised learning task is a
mapping function f : X → Y that can minimize the expected
risk on a test distribution p(x, y):

f∗θ = arg min
fθ

Ex,y∼p(x,y)[`(fθ(x), y)],

where ` : Y × Y → R is the risk function. With the i.i.d.
assumption holding true, the Empirical Risk Minimization
(ERM):

f∗θ = arg min
fθ

n∑
i=1

`(fθ (xi) , yi)

serves as an approximation to the expected risk, which guaran-
tees the performance when training data {xi, yi} are sampled
from the same distribution as the test environment.

B. Formulation of Joint Shift Problem

In applications, due to the possible distribution shifts on
either training or test distributions, the i.i.d. assumption often
fails. Throughout this paper, we are concerned with the two
basic shifting modes on P (x) and P (y|x), regarded as do-
mains and tasks. We introduce two latent variables, denoted
by d and t, to represent the two changeable components for a
more accurate description.

Definition 1 (Joint Distribution Decomposition). Assuming
that tasks and domains are independent, i.e., t ⊥ x and
d ⊥ y|x, a joint distribution can be factorized as two separate
components:

Pi(x, y) = P (x, y; di, ti) = P (x; di) · P (y|x; ti). (1)

Each Pi(x, y) corresponds to the i-th local i.i.d. sampling,
with di and ti encoding its domain and task. The two variables
are used to parameterize a joint distribution and decompose the
variation into two independent parts. From this, many existing
models, as DG and FS, can be regarded as special cases of
multivariate distribution shifting: DG supposes a consistent
task with different domains P (x; di) among all distributions,
while FS mainly focuses on the variation on P (y|x) for
different ti. In general, the domain d and task t is provided as
additional known conditions or can be inferred from specific
examples.

Fig. 2. Relation of components in different shifting models. The unshaded
nodes refers to their possible shifting components. In Joint Shift cases, there
is no direct and decisive relation between x and y, so z is introduced to depict
their internal correlation.

The learning target of Joint Shift is extended to a function
family F(x; di, ti). To further specify the form of the target
function modulated by d and t for practical uses, we introduce
an extra intermediate variable z to divide the mapping from
x to y into two phases: x → z and z → y, depending only
on d and t respectively. Thus, the learning objective can be
formally phrased as:

Definition 2 (Joint Shift Problem). Supervised learning objec-
tive for Joint Shift is defined as a composite function family:

F = {fi|fi = hti ◦ gdi},

where gdi : X → Z, hti : Z → Y , s.t.

f∗i (x) = arg min
f
{EPi∼P[Ex,y∼Pi [`(hti(gdi(x)), y)]]}, (2)

where Pi(x, y) = P (x; di) · P (y|x; ti) is sampled from an
underlying distribution P.

In this way, the newly introduced variable z is a sufficient
representation of x to predict y regardless of the domains or
tasks, and any joint distribution P (x, y) can be regarded as
a variation of d and t on a distribution of P (z). Besides, in
practice, as the input space of x in different domains often
shares no intersection, a single mapping function g : X → Z
is sufficient to serve for all domains instead of gdi . Fig.2 is
an intuitive graphical illustration of the Joint Shift problem,
which can be seen as a combination of two causal models for
domain and task shifts.

This definition is not restricted to the form of domains
or tasks in applications. More detailed implementations and
the learning procedure will be discussed in Section VI as the
experiment settings, where domain d is manually labeled for
training and is to be inferred in the test, while the task t can
be inferred through a small set of data in few-shot cases.

C. Infeasibility of Invariant Assumptions

Although a general learning framework for joint shifts is
proposed, its generalization ability on novel distributions is
still not guaranteed, which mainly depends on an appropriate
representation of z. In Def.2, z is still indefinite considering
diversified decomposition modes of x→ z → y. It is obvious
that some trivial solutions of z, e.g., z = x or z = y,
are of no service to the generalization on shifting d or t.
To promote applicability, some current works make further
assumptions that z serves as an invariant representation shared
by all possible distributions. In other words, they suggest that
different input source distributions can be mapped to a shared
latent distribution of z to eliminate the variant components in
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the raw data where p(y|z) is learned for i.i.d. prediction. As
an effect, it enhances the generalization by transforming novel
distributions to an invariant space of z.

Nevertheless, we prove that such invariant assumptions are
not applicable for joint shifts, as the influence of multivariate
shift acts on both x and y that cannot be depicted by a single
invariant. Specifically, we will illustrate the dilemma with two
practical constraints from domain generalization to show the
incompatibility of invariant on multivariate shift.

A most basic assumption is to transform the input x to z
with an globally invariant prior P (z), thus mapping each local
distribution to an i.i.d. joint distribution z× y [13], [38], [39].
Nonetheless, such a fixed invariant prior P (z) is not available
even if only domain shifts are considered:

Proposition 1. There does not exist an invariant distribu-
tion P (z) such that for any Pi(x, y), ∃fi : x → z, s.t.
∀i, Pi(y|f(x)) = P (y|z) and Pi(f(x)) = P (z),

The proof is simple by examining the marginal shift of Y :

Proof. Considering the product of the two equations, we
have: Pi(y, f(x)) = P (y|z) · P (z) = P (y, z). The marginal
distribution of y in the specific task t is thus derived through
pi(y) =

∫
pi(y, f(x)) df(x) =

∫
p(y, z) dz = p(y). It

suggests that y from any source Pi must share a same marginal
distribution, i.e. ∀i, pi(y) = p(y), which is not necessarily true
under given conditions.

Thus, this method requires the consistency of P (y|d) for
all domains when denoting each Pi by a di. As p(d) and
p(y) are often known in the training data, it is also equivalent
to consistent P (d|y) through Bayes rule, indicating that the
distribution of domains should be unrelated with the labels
and tasks, which must be ensured by the training data itself
or other pre-processing methods as in [15].

To avoid this defect by excluding the influence of P (y),
a substitute invariant P (z|y) is proposed [16], [59], where z
serves as the key representation of label y that is shared among
all domains. But such assumption an can still not adapt to
changeable tasks ti in Joint Shift.

Proposition 2. There does not exist an invariant posterior
distribution P (z|y) such that for any Pi(x, y), ∃fi : x → z,
s.t. ∀i, Pi(z|y) = P (z|y).

Proof. We denote Pi(x, y) = P (x, y; ti). A simple example
is sufficient to illustrate this problem: consider two different
labels, y1 and y2 from a distribution p1(x, y) for task t1, where
p1(z|y1, t1) 6= p1(z|y2, t1). Then we manually define a new
task t2, which denotes the y1 in t1 as y2. so that p2(z|y2, t2) =
p1(z|y1, t1). However, for p2(x, y) corresponding to t2, we
have p2(z|y2, t2) = p(z|y2) = p1(z|y2, t1) 6= p1(z|y1, t1),
which is a contradiction.

The above example shows an extreme case where different
tasks are highly negatively correlated. In multi-task cases, such
assumption on invariant representation can only be available
when ∀i, p(z|y, ti) is observed, requiring excessive sampling.
It shows that such an explicit invariant is still unable to handle

the problem when both components of joint distribution are
unstable.

In short, although invariance is vital for OOD generaliza-
tion, most classic invariant assumptions are inapplicable when
suffering from joint shift due to unpredictable correlations of
domains and tasks in raw data P (x, y). To solve this problem,
we modify the raw distribution to eliminate the correlation
between two shifting modes.

IV. INVARIANCE LEARNING FOR JOINT SHIFT

This section focuses on constructing an invariant space from
joint shift distributions. Since the invariance cannot be directly
defined from such data, we propose an approach to recombine
the components and generate pseudo data space, so as to
ensure an i.i.d. prior P (z). To further form a specific learning
algorithm, we construct a probabilistic graphical model to
represent the pseudo distribution and maximize its likelihood
within a variational framework.

A. Enforced Decorrelation Alignment

As proved in Prop.1, it is unreasonable to suggest a shared
invariant P (z) for all distributions due to the possible marginal
shift of P (y). Inspired by the causal intervention in [40], we
proposed Enforced Decorrelation Alignment (EDA), a data
augmentation method, to address this problem. It conducts do-
main transfer on the raw data and generates pseudo examples
to balance the domain for different tasks, so that the marginal
P (y) can be aligned for all domains. The correlation between
domains and tasks can thus be actively eliminated, ensuring
the invariance of P (z).

EDA acts on the feature of each input sample x. For a better
illustration of our idea, we divide it into two parts, which is
also shown in Fig.4:

Definition 3. An input sample x can be characterized by a
pair of features (a, z). z is a sufficient semantic for task,
i.e.,∀t, P (y|x; t) = P (y|z; t). The residual visual characteris-
tics that only related with domains d is denoted as appearance
a.

The marginal distributions of appearance and semantic,
i.e., P (a) & P (z), are related to the shift on domain P (x)
and task P (y|x). Thus, the invariant assumption of P (z)
can be rephrased as: z ⊥ a|d. To avoid their dependency,
we explicitly separate the two components and reconstruct a
regularized pseudo space P ′(a, z) = P (a)·P (z) as a substitute
for the original feature space P (a, z). In other words, after
extracting the appearance and semantic features from input
examples, we randomly shuffle and recombine them to gener-
ate pseudo examples, and modify other supervised information
synchronously. As both features are collected from different
inputs, the pseudo data no longer maintain the correlation
in original joint distributions, and the marginal distributions
of P (x) and P (y) are aligned for all raw distributions.
This method not only offers an aligned data space, but also
increases the diversity.

The realization of EDA is rather simple, as shown in Fig.3.
Within each supervised input batches {xi, di}, i = 1, ..., n
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Fig. 3. Schematic diagram of the EDA operation.

from multiple domains, a set of {zi, ai} can be inferred. We
randomly shuffle all ai into a new order a(i) and record a
corresponding d(i). Then we reassemble these latent code and
regenerate a batch of new input x(i) ∼ p(zi, a(i)), each sharing
a same semantic but different domain with the original xi.
The augmented data {x(i), yi} are then included into training
data with the shuffled domain d(i), so that in the augmented
data space, z is independent of a and is also an appropriate
representation for the raw data:

Proposition 3. The raw data distribution Praw and the
augmented distribution Paug satisfy that: ∀a, d, z,

Eraw[H(a|d)] = Eaug[H(a|z, d)] = Eaug[H(a|d)], (3)

The first equation implies that the variation of z in the
augmentation does not affect the feature extraction on the
original data, while the second equation implies that the
relevance of domain and task semantic on the augmented space
is fully eliminated. From a causal view, the random domain
alignment applies intervention on the appearance a for each
sample to align a unified marginal distribution p(z) throughout
all sampling environments. Considering the counterfactual
operator ”DO” used in casual learning as applied in [29], [60],
the operation of EDA can be seen as interventions on z:

Proof. The swapping procedure of domain di and appearance
ai are always synchronized in EDA, so for each domain
di in the original sample space, the swapping procedure
can be regarded as an adjustment on the distribution of z
while keeping the appearance ai unchanged. As Paug(z) is
strictly identical to the marginal distribution Praw(z) and is
independent of any variables in augmented distribution, we
have:

Eraw[H(z)] = Eaug[H(z)] = Eaug[H(z|d, a)],

and thus:

Eraw[H(a|d)]

=Eraw[H(a|d,DO(z))]

=Eaug[H(a|d, z)]
=Eaug[H(a|d, z)]− Eraw[H(z)] + Eraw[H(z)]

=Eaug[H(a|d, z)−H(z) +H(z|a, d)]

=Eaug[H(a|d)]

(4)

This proposition indicates that in the augmented distribu-
tion, the independence z ⊥ a|d is proved to be valid in each
domain. Therefore, the existence of invariant prior P (z) is
guaranteed.

Fig. 4. A graphic model for Joint Shift problems. Solid lines denote the
generative model; dashed lines denote the variational approximation. Shaded
nodes may explicitly be provided or inferred in training. The index marks
refer to items in Equ.5.

B. Graphical Model for Variational Learning

To better illustrate all these auxiliary variables and their
relationships, we use a probabilistic graphical model to rep-
resent Joint Shift formulation with invariant P (z) ensured
by EDA, see Fig.4. As defined in Def.3, for a local data
distribution Pi, each input sample xij is characterized by
a semantic zij for prediction, and a appearance aij that
is sampled from a distribution determined by domain di.
The invariant assumption is reflected through the d-separation
property, i.e., z ⊥ a|d, suggesting that z subjects to a
global invariant distribution regardless of its sampling source.
The output yij is represented by pi(y|z; t) with task ti.
In few-shot cases, the task t can be explicitly inferred as
t̂ = arg maxt P (t|x, y). Prediction on any assigned tasks is
conducted through p(y|x; t) = Ez p(y|z; t) · p(z|x), which
requires p(z|x) and p(y|z; t) that can generalize to unseen
domains and tasks.

This model is used for representing supervised data with
joint shifts, and its parameters can be learned through varia-
tional inference, marked by dashed lines in Fig.4. For prac-
tical usage, we approximate the posterior p(a, z|x; θx) with
a variational posterior q(a, z|x;φ) which decomposes as the
product of q(a|x;φa) and q(z|x;φz), where φa and φz are
the variational parameters for semantic z and appearance a.
Another posterior q(d|a;φd) is used to estimate the probability
of domain d for given examples. The log-likelihood for the
supervised data in training can thus be derived as follows:

log pθ(x, y, t, d)

= log p(t) + log p(x|d) + log p(y|x, t) + log p(d)

≥ Ez∼qφz (z|x),a∼qφa (a|x)[log pθx(x|z, a)]︸ ︷︷ ︸
I reconstruction

+ Ez∼qφz (z|x)[log pθy (y|z, t)]︸ ︷︷ ︸
II task prediction

+ Ea∼qφa (a|x)[log qθd(d|a)]︸ ︷︷ ︸
III domain prediction

− {2 ∗KL[qφz (z|x)‖p(z)] +KL[qφa(a|x)‖p(a|d)]}︸ ︷︷ ︸
IV KL divergence

+ log p(t)

= ELBO + log p(t)

(5)
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where log p(t) is non-optimiazble.
The ELBO provides a lower bound for the log-likelihood of

the joint distributions of observed data, and the whole training
dataset can be factorized as the product of ELBO within each
local distribution. Thus, the graphic model can be used to
represent any supervised joint distributions and for inference
on unseen ones with determined tasks.

V. ALGORITHM IMPLEMENTATION

This section provides a network structure and its corre-
sponding algorithm based on the previous derivation. With a
set of neural networks, we implement variational learning on
the graphical model of Fig.4. The augmented data of EDA
is added to the loss function, and other auxiliary terms as
an information bottleneck and cycle consistency loss are also
introduced as regularization for enhanced performance.

A. Network Structure

In practice, neural networks are adopted to parameterize
both conditional distributions and variational posteriors for
maximization of ELBO in Equ.5, as shown in Fig.5. The
encoder embeds an input image into a pair of latent variables
[zi, ai], which is randomly shuffled and recombined through
the EDA. Following the classical VAE [61], the original pairs
then go through the Decoder to calculate the reconstruction
loss, while the recombined pairs generate pseudo examples
Xswap. The augmented data are sent into Encoder once again
to obtain new latent pairs [z′i, a

′
(i)]. All these latent variables

serve the corresponding downstream tasks: z and z′ for label
classification p(y|z; t) under a specific task embedding t, while
a and a′ for variational posterior of domain q(d|a).

Fig. 5. An overview of our method. Solid and dashed lines denote the
generative and variational approximation process respectively. Encoder and
Decoder serve for the transformation between variable pairs [z, a] and their
corresponding inputs x, while Cls-Y and Cls-D are classifiers to predict labels
and domains through z and d. The task code T depends on specific task forms.

A basic loss function directly derived from the ELBO in
Equ.5 is as follows:

LELBO(x, y, d, t)

=BCE(x, x′) + KL(z) + KL(a)+

µ · [CE(ClsY (z), y; t) + CE(ClsD(a), d)],

(6)

where [z, a] = Encoder(x), X ′ = Decoder(z, a). CE and
BCE refer to the Cross Entropy Loss and Binary Cross
Entropy. KL refers to the KL divergence of the variable to a
predetermined prior as standard normal distribution.

The regularization term of EDA is obtained by feature
recombination as:

LEDA = CE(ClsY (z′), y; t) + CE(ClsD(a′), d), (7)

where [z′, a′r] = Encoder(Decoder(z, ar)).
For implicit task-shifting scenarios, the task embedding

t is assumed to be constant. In explicit multi-task cases
as few-shot learning when the task is defined by a set of
support examples, we collect their features to represent task t.
Practically, we adopt a Feature-Wise Linear Modulation [62]–
[64] based method for ClsD and use the mean values of z on
the support set as the modulation vector t.

B. Enhanced Representation of z

Our algorithm enables us to encode the domain, task, and a
shared semantic z just by optimizing the marginal likelihood
for observed data. However, as [65] has pointed out, due to the
unpredictable information allocation, the latent variables may
not necessarily include sufficient information as a good repre-
sentation for all downstream tasks. Additional regularization
methods are introduced to alleviate such problems, including
information bottleneck and cycle consistency.

During prediction, the inference flow is x→ z → y, where
z acts as a sufficient representation for x on estimating y.
We expect that z is capable of handling all prediction tasks
p(y|z; ti) as an information bottleneck [66] to enhance its
robustness. More specifically, we adopt an modification as:

min
z
I(x; z), s.t. I(x; y|z) = 0

Lagrange(z, β) = I(x; z) + β{H(y|z)−H(y|x, z)}
=Ex∼p(x)[KL(p(z|x)‖p(z))] + βEy∼p(y|z)[log p(y|z)]
−βH(y|x)

, (8)

where β is the Lagrange multiplier, similar to that of β-VAE
[67], [68]. Note that the H(y|x) can not be optimized, and the
other two items is already calculated in 6, so the bottleneck
constraint is eventually rewritten as a penalty:

LBTN = KL(z) + CE(ClsY (z), y; t), (9)

Thus, the information bottleneck on semantic z ameliorates its
representation ability.

Further, we introduce additional cycle loss to enhance the
reliability of pseudo examples. Unlike real images, the consis-
tency of the EDA augmented images through the autoencoding
process cannot benefit from reconstruction loss, which may
affect the accuracy of regenerated latent codes z′ and a′r. So
the cycle loss is exerted on [z, ar], as

LCycle = MSE(z, z′) + MSE(ar, ar
′), (10)

which can promote the stability and identifiability of the
generated images in the early stage of training. The overall
loss function is in the form of:

L = LELBO + λ · LEDA + β · LBTN + γ · LCycle. (11)
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In practice, the weight of regularity terms, LEDA and LBTN ,
should be increased in a two-stage training process for im-
proved convergence.

VI. EXPERIMENTS

In this section, we would like to answer the following
questions through experimental evaluation: (1) In what sce-
narios should Joint Shift on data distribution be considered?
(2) Can our method disentangle the joint features of domain
and task? (3) Can the learned invariant representation promote
generalization on novel distributions? Experiments on two
practical cases are conducted as the demonstrations.

A. Datasets and Baselines

Both variations in domains and tasks are to be considered
in the Joint Shift problem: the former is related to the dataset,
and the latter is determined by the learning scheme.

Domain Shifts: We adopt two multi-domain datasets from
popular benchmarks of DG to analyze domain shifts. Digits-
DG [69] is a digit recognition dataset with 24k examples that
consists of 4 widely used datasets, i.e., MNIST [70], MNIST-M
[71], SVHN [72] and SYN [71]. Office-Home [73] is a general
object recognition dataset that contains 15.5k images of 65
classes from 4 domains (Art, Clipart, Product, and Real World)
in home and office life. We follow the leave-one-domain-out
evaluation as [9].

For domain generalization, we choose six representative
baselines from two branches: invariance learning and data
augmentation. (1) DeepCoral [39] proposes a regularization
metric to directly match the statistics of all feature distribu-
tions; (2) MMLD [43] separates domains by clustering and
then realigns them through adversarial training; (3) MMD-
AAE [41] imposes the MMD [74] regularization on adversarial
autoencoders to align feature distributions. (4) MixStyle [45]
conducts linear interpolation as Mixup [44] on feature-level
to synthesize novel domains; (5) CrossGrad [46] directly per-
turbs input with adversarial gradients from a domain classifier
to eliminate the domain-related appearance; (6) JiGen [49]
designs a secondary Jigsaw puzzle task to recover each image
from its shuffled parts.

Task Shifts: Two scenarios are studied to cover both
implicit and explicit task-shifting modes. (1) Domain Gener-
alization with class imbalance follows the standard settings of
DG with variable label distributions across different domains,
leading to implicit task shift; (2) Domain Generalization
Few-Shot Learning is a combination of DG and FS, which
constructs few-shot tasks from multi-domain datasets, where
the task is always defined explicitly by a small set of labeled
data.

For few-shot learning, we choose three classic methods
that correspond to the three main categories of meta-learning:
model-based, optimization-based and metric-based, as demon-
strative approaches for Joint Shift. (1) FiLM [62], [63] designs
a widely used conditional learning layer for multi-tasks. (2)
MAML [75] develops a meta-optimization to initialize a base
model to fit all tasks with a few gradient steps. (3) Relation
Network [76] uses a learnable deep metric to measure the

Fig. 6. An illustrative comparison of the training data in conventional DG
and DG with class imbalance.

distance between examples. These FS approaches are com-
bined with DG methods or simply vanilla ERM, serving as
baselines for our second scenario. We selectively conduct 10
joint baselines in total, as some DG methods can suffer from
severe degradation when applied to few-shot environments.

B. Domain Generalization with class imbalance

In a standard domain generalization problem, the proportion
of categories can differ significantly across all domains, see
Fig.6. As analyzed in [15], [16], although a single P (y|x) is
still sufficient for such a case theoretically, it conflicts with
the causal structures in real-world images [77], leading to
weak generalization ability. By adjusting the unbalance degree
of class labels, we conduct three experiments with different
extent of implicit task variation and measure the resistance of
algorithms. The maximum KL-divergence of P (y) between
domains is used to quantify the extent of domain imbalance.

Implementations: For Digits-DG, all algorithms are based
on the same backbone with 3 convolution layers (channels =
32, 64, 64, kernel size = 4) and 3 linear layers (channels =
128, 64, 10) with other settings similar to that in [69]. More
detailed settings of our method is provided in Table.I, and its
decoder structure is exactly symmetrical to the encoder. The
training process is divided into two stages: for the first stage,
only LELBO and LBTN are involved in the loss function
for better initial features, and the EDA augmentation is then
employed to disentangle them. For Office-Home, we follow
the implementation of [8] but replace the backbone with a
smaller version, ResNet18 [78], which is more widely used
in other baselines. To obtain a corresponding decoder with

TABLE I
DETAILS OF NETWORK STRUCTURES AND HYPER-PARAMETERS.

Digits-DG Office-Home

Encoder Backbone Conv (32-64-64)
Linear 192 ResNet-18 without FC

Reparameterization A Linear (128-64) Linear (256-128-128)
Z Linear (64-64) Linear (128-128-128)

Classifier Y Linear (64-32-10) Linear (128-256-256-65)
D Linear (64-32-3) Linear (128-128-3)

Loss parameter
Stage 1 µ = 1.0E5 , λ = 0

β = 0.5 , γ = 0
µ = 1.0E4 , λ = 0
β = 0.5 , γ = 0

Switch point Epoch = 20 Epoch = 5

Stage 2 µ = 1.0E5 , λ = 5.0E4
β = 0.75 , γ = 100

µ = 1.0E4 , λ = 100
β = 1 , γ = 1

Optimizer AutoEncoder Adam, lr=0.001 Adam, lr=0.005
Classifier Adam, lr=0.001 Adam, lr=0.01
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TABLE II
RESULTS ON STANDARD DIGITS-DG (KL = 0) FOR DG.

MNIST MNIST-M SVHN SYN Average

ERM 95.0 58.8 61.8 78.8 73.6
DeepCoral 95.3 61.6 61.4 80.0 74.6
MMLD 94.4 55.3 61.3 91.5 75.6
MMD-AAE 95.5 59.7 65.2 77.9 74.6
MixStyle 95.2 50.4 71.9 91.7 77.3
CrossGrad 95.9 59.8 68.1 80.3 76.0
JiGen 96.5 60.9 63.7 74.2 73.8
EDA 95.7 61.4 69.1 83.5 77.4

TABLE III
RESULTS ON IMBALANCED DIGITS-DG (KL ≈ 0.659) FOR DG.

MNIST MNIST-M SVHN SYN Average

ERM 90.1 51.9 58.4 61.8 65.6
DeepCoral 87.3 58.9 53.3 63.3 65.7
MMLD 66.3 39.7 48.1 55.4 52.4
MMD-AAE 80.8 47.1 56.7 62.4 61.8
MixStyle 85.3 48.9 61.8 62.0 64.5
CrossGrad 76.4 48.7 53.0 57.6 58.9
JiGen 90.8 50.1 56.8 58.1 64.0
EDA 91.5 60.4 66.1 66.8 71.2

DGER 92.5 57.3 62.1 65.4 69.3

good initial pretrained features, we adopt the upsampling-
convolution structure proposed in [79] to construct the corre-
sponding ResNet-18 decoder and initialize it by unsupervised
training on the training domains together with a frozen encoder
pre-trained on ImageNet. All hyper-parameters are selected
based on the performance on the source validation set, as
adopted in [8], [80].

Results on standard Digits-DG: The first experiment is
set on Digits-DG where the labels of digits 0-9 are uni-
formly distributed in all domains, with KL = 0. From the
results shown in Table.II, we find that for such a simple
problem, most DG algorithms, including our EDA, cannot
make significant improvement beyond the ERM baseline. Our
algorithm achieves competitive performance with a slightly
higher average accuracy; but does not achieve the best in any
single test item. One reason is that in this case, due to the
stability of P (y), the task P (y|x) can almost be regarded as
the same, so only shifts on domains need to be considered.

Results on imbalanced Digits-DG: To study the impact
of implicit task shifts, we retain three disjoint classes in each
training domain and reduce the number of examples in the rest
categories to 1/3. Thus, there is a high correlation between
domains and label distributions with KL ≈ 0.659. The results
are reported in Table.III. Due to the decrease in sample size,
the accuracy of vanilla ERM reduces by 8.1%, and the other
baselines for DG suffer more severe performance loss from
8.9%-21.1%. It shows that an implicit Joint Shift problem
does exist in this scenario, and the classic methods of DG
can be extremely fragile when faced with such task shift.
In comparison, the average accuracy of EDA only drops by
6.2%, indicating a strong resistance to imbalanced data. An
additional baseline DGER [16] is also conducted with manual

TABLE IV
RESULTS ON OFFICE-HOME (KL ≈ 0.029) FOR DG.

Art Clipart Product RealWorld Average

ERM 58.7 49.3 74.3 76.1 64.6
DeepCoral 61.6 49.0 74.2 76.4 65.3
MMLD 56.6 51.1 72.2 71.7 62.9
MMD-AAE 57.3 47.2 71.8 75.1 62.9
MixStyle 61.5 47.3 74.5 75.3 64.7
CrossGrad 58.4 49.4 73.9 75.8 64.4
JiGen 53.0 47.5 71.5 72.8 61.2
EDA 62.2 50.1 76.7 80.5 67.4

label balancing required, but its performance is still slightly
inferior to ours. From this experiment, we conclude that the
variation on task should not be ignored even in conventional
DG settings.

Results on Office-Home: Slight divergence of label dis-
tribution across domains exists widely in real-world environ-
ments, such as the Office-Home dataset with KL ≈ 0.029.
From Table.IV, the performance is roughly similar to that in
Digits-DG. EDA achieves more evident improvement over all
other baselines in all test items except MMLD for Clipart.
Especially, it shows better performance on test domains with
more diversified textures, which may indicate a strong ability
on reconstructing the key information from complicated data.
This experiment proves that our method also works well in
more practical application scenarios where Joint Shift exists
implicitly.

Ablation Study and Visualization: To better evaluate the
ability of EDA on disentangling joint features, we focus on
the imbalanced Digits-DG setting for ablation analysis on
the loss function Equ.11 in Table.V. Pure ELBO works even
worse than vanilla ERM, as its self-supervised features may
over-fit the training domains. The performance improvement
is mainly from EDA, with other terms playing auxiliary
roles. We further conduct visualization on a and z feature
by Spectral Embedding [81], a feature extraction algorithm
based on clustering, see Fig.7. The feature of pure ELBO
shows obvious relevance between a and z, indicating that
different components are mixed together in both features. In
contrast, the EDA method can better disentangle the semantics
of the domain and task spontaneously, thus ensuring the
independence hypothesis a ⊥ z|d.

The feature disentanglement is also verified by the augmen-
tation effect of EDA, see Fig.8, where images are generated
by EDA with assigned appearances and labels. The resulting
effect is similar to style transfer [82], [83], where an image can
be rendered into multiple domains while remaining the same

TABLE V
ABLATION STUDY FOR EVALUATING COMPONENTS OF THE LOSS

FUNCTION.

MNIST MNIST-M SVHN SYN Average

ELBO Only 92.2 56.5 65.4 73.0 71.8
+EDA 96.3 57.8 66.3 79.1 74.9
+EDA+BN 94.1 59.7 60.1 81.3 73.8
+EDA+CYCLE 95.9 60.3 68.7 82.4 76.8
+EDA+BN+CYCLE 95.7 61.4 69.1 83.5 77.4
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(a) ELBO Only (b) With EDA
Fig. 7. Visualization of features a and z from imbalanced DIGIT-DG. Each
axes correspond to the first principal component to a and z respectively.

Fig. 8. The generating process of EDA and its augmentation results. Images
in the same row share a same semantic z, but hold different a according to
their column.

semantic contents. However, our appearance contains more vi-
sual information, including the font, stroke and rotation, which
often remain unchanged in typical style transfer approaches,
so our method can further exclude the appearance contained in
z. Besides, the cycle consistency loss LCycle is vital for image
quality due to the lack of direct supervision on the generated
pseudo examples.

C. Domain Generalization Few-Shot Learning

In this section, we consider the possible domain shift on
few-shot learning as an example for Joint Shifts with explicit
task definitions. We define Domain Generalization Few-Shot
Learning as a combination of DG and FS, where examples
from different domains can be arbitrarily mixed and collected
for few-shot learning. A typical few-shot meta-task, known as
N-way K-shot, is defined by a support set of K ·N examples
from N classes, each with K examples, and a query set that
is sampled from the same N classes as test data. The goal is
to carry out a classification on the query set according to the
support set regardless of the domains. In our experiment, the
training data can contain examples from multiple domains, and
in test sessions, three main generalization modes are covered,
see Fig.9. Support Shift represents the domain variation of the
support set, indicating the shift on task definition, while Query
Shift corresponds to the domain generalization on the query
set, indicating the robustness of the few-shot classifier. Be-
sides, with additional assumptions that the query and support
set are always collected from the same domain, the problem
setting turns into a special mode of Cross Domain few-shot
that is discussed as another paradigm.

Implementations: Most methods for few-shot learning still
work on such problems regardless of the domain shifts,

Fig. 9. The three Domain Generalization test modes in Few-Shot Learning.

and can also be combined with other domain generalization
approaches. For our method, we simply insert a single con-
ditioning layer FiLM [62] before the label classifier ClsY ,
and the feature of support examples is concatenated as a task
representation. Meanwhile, in order to avoid the interference
of frequent task changes on feature extraction in the initial
stages of training, the unsupervised pre-training of autoencoder
in Sec.VI-B for Office-Home is also adopted to Digits-DG.
Other implementation details refer to the Task Conditioning
in [63]. For other DG baselines, we insert FiLM before their
multi-layer classifier for modulation. Besides, we also test two
other classical FS methods, MAML [75] and Relation Network
[76], and combine them with MMD or MixStyle to align or
mix their intermediate features, in hope of enhancing their
resistance to domain shift. Pre-trained features are also adopted
for all baselines if possible. For a more clear analysis on test
result, different from the classic few-shot test scenario, we
follow the in-distribution setting proposed in [84], which does
not require disjoint sets of training and test classes for task
generation, thus ignoring the interference caused by novel test
classes. All numerical results are based on the setting of 5-way
5-shot.

Results and Analysis: The main results on Support Shift
and Query Shift are shown in Table.VI for Digits-DG and
Table.VII for Office-Home with similar performance for each
algorithm. With concerns about the disentangle difficulty
caused by Joint Shift, our method significantly outperforms
other baselines in most test items. Conclusions are made for
explicit joint shifts from the perspectives of FS and DG.

(1) It is hard for the existing FS algorithms to handle distinct
domain differences within a single training meta-task, resulting
in abnormally poor performance. In severe cases, the algorithm
may not even converge in training, as in the Relation Network
for MNIST test. Such defects can exist on either model-based
or metric-based methods, probably because that too many
domain-related features are encoded in the task modeling,
so feature extraction and task representation cannot be well
separated. Ideally, the embedding module in those approaches
should extract domain-invariant representations regardless of
the task shifts, which is achieved by the forced style trans-
fer of EDA. Besides, we find that in Joint Shift scenarios,
optimization-based algorithms such as MAML are relatively
weak, due to their theoretical requirements on consistent task
space. The Relation Network particularly outperforms other
methods on those test domains with relatively simple textures,
such as SYN and Clipart.

(2) The combinations of DG and FS methods often result
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TABLE VI
RESULTS ON DIGITS-DG FOR DOMAIN GENERALIZATION FEW-SHOT LEARNING.

Support Shift Query ShiftFS DG MNIST MNIST-M SVHN SYN Average MNIST MNIST-M SVHN SYN Average
Vanilla 82.5 80.4 87.9 84.4 83.8 89.4 80.0 72.8 75.3 79.4
MMD 85.2 79.4 90.1 82.5 84.3 88.7 81.1 75.7 72.2 79.4
MixStyle 87.9 68.6 84.3 86.4 81.8 84.8 57.4 76.8 75.6 73.7FiLM

CrossGrad 79.3 62.8 79.7 81.6 75.9 80.7 58.6 64.3 62.1 66.4
Vanilla 83.3 73.4 77.1 76.6 77.6 87.2 60.1 68.7 74.7 72.7
MMD 82.2 67.8 78.3 74.5 75.7 84.3 69.5 71.3 69.6 73.7MAML
MixStyle 84.3 56.4 81.2 86.1 77.0 86.7 66.4 73.6 78.1 76.2
Vanilla 25.3 83.5 90.6 90.7 72.5 22.6 81.6 64.8 75.6 61.2
MMD 23.8 78.4 88.7 74.7 66.4 21.7 81.1 64.4 79.9 61.8Relation

Network MixStyle 81.2 80.1 91.4 92.3 86.3 77.1 76.5 67.1 81.2 75.5
EDA 90.2 89.1 93.5 87.8 90.2 89.4 88.7 77.1 78.9 83.5

TABLE VII
RESULTS ON OFFICE-HOME FOR DOMAIN GENERALIZATION FEW-SHOT LEARNING.

Support Shift Query ShiftFS DG Art Clipart Product Real World Average Art Clipart Product Real World Average
Vanilla 68.7 62.3 74.2 78.7 71.0 56.5 51.7 70.1 77.3 63.9
MMD 66.9 59.8 71.2 78.1 69.0 53.2 48.1 64.6 74.2 60.0
MixStyle 71.5 60.8 76.1 78.3 71.7 64.4 51.5 72.0 72.1 65.0FiLM

CrossGrad 60.2 50.6 70.1 71.2 63.0 57.7 52.2 68.8 76.4 63.8
Vanilla 62.1 58.4 69.7 80.1 67.6 52.2 49.3 71.1 79.2 63.0
MMD 57.9 54.3 70.4 82.1 66.2 47.9 45.1 68.7 79.6 60.3MAML
MixStyle 70.1 51.3 67.8 74.3 65.9 53.5 48.9 72.2 72.6 61.8
Vanilla 68.7 62.3 74.2 78.7 71.0 56.5 51.7 70.1 77.3 63.9
MMD 67.3 67.1 70.8 77.6 70.7 48.7 54.7 63.8 73.4 60.2Relation

Network MixStyle 76.2 52.2 75.4 76.4 70.1 57.2 47.6 70.9 74.4 62.5
EDA 78.5 67.6 80.3 85.4 78.0 67.1 53.5 79.4 85.2 71.3

in even worse performance than vanilla FS baselines, which
verifies our previous theoretical analysis. The frequent task
shifts in FS training will lead to the inconsistent semantic
representation of examples, which greatly hinders the cross-
domain alignment in the DG algorithm. Nevertheless, some
data augmentation based on prior designs like MixStyle are
less affected, and can still assist in narrowing domain gaps.
Therefore, they are suitable to be combined with FS. Our EDA
utilizes augmented data to eliminate the potential correlation
between domains and tasks and can thus align different domain
distributions regardless of their corresponding tasks.

Comparison to Cross-Domain Few-Shot: Cross-Domain
Few-Shot learning problem [12] is an emerging paradigm for
few-shot learning, where all examples in a single meta-task
must be collected from the same dataset, i.e., a pair of support
and query set always share the same domain, while multiple
domains can exist in different tasks, making it more like a
domain adaptation implementation by adapting to the support
set. It is not a typical form of Joint Shift, as each task is always
directly bound to a specific domain in such settings. At this
cost, learners in this paradigm lack the ability to distinguish
the same category across domains. In Table.VIII, we conduct
a most representative baseline, ProtoNet + FWT from BSCD-
FSL benchmark [36] on Digits-DG and compare it with other
basic few-shot approaches. Due to its special prior on the
shared domain, its average accuracy is significantly higher
than all other methods. However, it is not applicable to all

TABLE VIII
COMPARISON OF METHODS UNDER THE SETTING OF CROSS-DOMAIN

FEW-SHOT.

MNIST MNIST-M SVHN SYN Average

Film Based 90.3 59.8 64.6 74.4 72.3
MAML 91.5 56.4 53.5 79.3 70.2
RelationNet 93.8 63.1 71.2 89.4 79.4
EDA 93.3 65.8 71.5 76.4 76.8

ProtoNet+FWT
(With Prior) 97.8 59.3 79.5 92.7 82.3

other shifting modes as Support Shift or Query Shift. The
metric learned by Relation Network can still work well on
this problem, while our EDA is unable to collect features
across domains within a single meta-task, resulting in poor
performance.

VII. CONCLUSION AND DISCUSSION

This work is a tentative attempt towards handling all distri-
bution shifts in arbitrary OOD cases, where a most ideal sce-
nario is that the learning machine can learn certain knowledge
from any supervised joint data pairs {xi, yi} regardless of the
distribution they subject to, and quickly adapt to any assigned
new tasks. To analyze this problem, we consider the general
decomposition of domain and task to transform the shift on the
joint distribution into classical forms that we are familiar with.
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Based on this, we proposed the Joint Shift problem, a new
scenario to model such cases when domain and task variation
is known, which poses a challenge to the existing invariance
hypothesis. The invariant representation learned by our method
is supposed to resist complex domain shifts and be utilized for
various task modes.

Despite all this, data from the open-world can always be
more changeable and less annotated, bringing about more
problems. Can such a model on joint distribution be extended
to semi-supervised learning? Can different tasks and domains
involved in data be discovered and defined automatically? In
future works, we will further strive to extend the practical
forms of domain and task in our Joint Shift model, and apply
it to more changeable scenarios with less prior knowledge on
distribution shifts.
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