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Abstract—Lifelong learning offers a promising paradigm of
building a generalist agent that learns and adapts over its
lifespan. Unlike conventional lifelong problems in image and text
domains, where distribution shifts between tasks mainly exist in
the form of declarative knowledge about entities and concepts,
lifelong learning in sequential decision-making (LLDM) also
requires the transfer of procedural knowledge (i.e., knowledge
about actions and behaviors). To advance research in LLDM,
we introduce LIBERO, a benchmark of lifelong learning for
robot manipulation. Specifically, LIBERO highlights five key
research topics centered around LLDM: 1) how to efficiently
transfer declarative knowledge, procedural knowledge, or the
mixture of both; 2) how to design effective policy architectures
and 3) effective algorithms for continual learning over an
evergrowing number of tasks; 4) the robustness of a lifelong
learner with respect to task ordering; and 5) the effects of
model pretraining in learning subsequent tasks. We develop a
procedural generation pipeline to create four task suites (130
tasks in total), which we use to investigate these topics. To
support sample-efficient learning, we also provide high-quality
human-teleoperated demonstration data for all tasks. Our ex-
tensive experiments uncovered several unexpected discoveries:
the sequential fine-tuning method outperforms existing lifelong
learning methods in forward transfer, visual encoders excel
at specific types of knowledge transfer, and naive supervised
pretraining can hinder downstream LLDM performance.1

Index Terms—lifelong learning, robot learning

I. INTRODUCTION

Lifelong learning (LL) is a practical way of training a
generalist agent that can master a diverse set of tasks over
its lifetime. The main body of the LL literature has examined
the transfer of declarative knowledge about entities and con-
cepts [1], [2]. However, how agents transfer both declarative
and procedural knowledge, which pertains to the ability to
perform tasks in policy learning for decision-making tasks,
is not well-understood. For instance, when a robot fails to
grab juice from the fridge, a task it has learned before, it
can be caused by either forgetting what the juice looks like
(declarative knowledge), or by forgetting how to open the
fridge or grasp the juice (procedural knowledge).

This paper addresses this research gap by investigating
lifelong learning in decision-making (LLDM), i.e., how to
train agents that continually learn and adapt to an evergrowing
number of sequential decision-making tasks. Specifically, we
study the robot manipulation domain, as manipulation tasks
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require a robot agent not only to understand various concepts
through perception but also to reason about how its actions
influence the environment.

To enable a systematic study of knowledge transfer in
LLDM, we introduce LIfelong learning BEchmark on RObot
manipulation tasks (LIBERO). LIBERO is designed with
a procedural generation pipeline to create simulated robot
manipulation tasks, where the taxonomy of tasks is mined
from human egocentric activity videos [3]. The pipeline lever-
ages a PDDL-based scene description language [4] that can
programmatically generate an infinite number of tasks. Hu-
man activity-inspired tasks intrinsically encompass entangled
knowledge transfer. For systematic evaluations, we create 130
tasks grouped into four suites in LIBERO. The first three task
suites (LIBERO-SPATIAL, LIBERO-OBJECT, and LIBERO-
GOAL), with 30 tasks in total, examine distribution shifts in
one of three aspects: type of objects, spatial arrangement of
objects, and the task goals, respectively. To solve these tasks,
the agent must continually acquire and transfer knowledge for
recognizing objects, reasoning about the spatial relationship
among objects, and executing a task. The remaining 100 tasks
(LIBERO-100) involve distribution shifts on all three aspects
and are hence more challenging for knowledge transfer. Natu-
ral language descriptions are used as the task identifier as they
can easily specify open-ended tasks. Figure 1 illustrates all
four task suites. To support efficient learning, we provide high-
quality, human-teleoperated demonstration data for all 130
tasks. Compared to existing benchmarks for meta/multitask
learning, LIBERO is explicitly designed for studying LLDM
in robot manipulation and is more scalable and extendable,
with the flexibility to create an infinite number of tasks through
automated task generation (See Section A for more detailed
comparisons of LIBERO with prior work).

Based on LIBERO, we investigate five major research
topics regarding LLDM (also illustrated in the bottom row of
Figure 1): 1) knowledge transfer in the presence of different
types of distribution shift; 2) neural architecture design; 3)
lifelong learning algorithm design; 4) robustness of the learner
to task ordering; and 5) how to leverage pre-trained models
in LLDM (See Figure 1). We perform extensive experiments
across different policy architectures and different lifelong
learning algorithms. Among the surprising observations aris-
ing from our experiments are:

1) The design of policy architecture is equally critical to
that of lifelong learning algorithms. Transformers are
better at abstracting temporal information than recurrent
neural networks. Vision transformers work well on tasks
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Fig. 1. LIBERO includes four procedurally-generated task suites (top): LIBERO-SPATIAL, LIBERO-OBJECT, LIBERO-GOAL, LIBERO-100. The first
three task suites induce distribution shifts along specific axes. For instance, tasks in LIBERO-SPATIAL have the same types of objects involved and the same
underlying task goal but require the agent to reason about different spatial locations of the objects. LIBERO-100 induces a distribution shift along all three
axes. With these four suites, we systematically investigate the five key research topics in LLDM (bottom).

with rich visual information (e.g., a variety of objects).
Convolution networks work well when tasks mainly
require the use of procedural knowledge.

2) While the lifelong learning algorithms we evaluated are
effective at preventing catastrophic forgetting, they may
not perform on par with naive sequential fine-tuning in
forward transfer.

3) Experiments show no significant benefits of using three
pretrained language embeddings over a task embedding
that lacks semantic information about the task.

4) The most basic supervised pretraining on a rich offline
dataset can have a negative impact on the learner’s
downstream performance in LLDM.

II. RESEARCH TOPICS IN LLDM

In this section, we outline five major research topics in
LLDM that motivate the design of the LIBERO task suites
and our benchmarking study.

a) (T1) Knowledge Transfer under Different Types of
Distribution Shift: LLDM requires transferring both declar-
ative and procedural knowledge in decision-making tasks.
For example, in the task “put the ketchup next to the plate
in the basket," the robot must understand the concepts of
“ketchup," the location of the plate and basket, and how
to physically “put" the ketchup in the basket. The first two
entail declarative knowledge, while the last entails procedural
knowledge. However, when the agent learns this task, all

these different types of knowledge are intertwined, making it
difficult to determine the cause of failure, whether it is a lack of
understanding of the concept “ketchup" (Object), an inability
to localize the ketchup (Spatial), or an inability to execute the
“put" motion (Goal). In Section III-B, we design three task
suites that allow us to investigate knowledge transfer under the
distribution shift of spatial understanding, object categories,
and task goals in a disentangled manner.

b) (T2) Neural Architecture Design: It has been estab-
lished that the design of neural network architectures plays
a critical role in learning in both partially observable [5]
and lifelong settings [6]. In this study, we consider a multi-
modal input for the robot, including both a task indicator
in natural language and observations in raw images. As a
result, designing a policy network that can 1) extract spatial
information about objects at the current time step, 2) combine
temporal information across multiple steps within a task, and
3) transfer only relevant knowledge when learning new tasks,
is a significant yet largely open research challenge.

c) (T3) Lifelong Learning Algorithm Design: Similar to
lifelong learning in vision and language problems, given a
fixed policy network, algorithm design is also an important
problem in LLDM. In addition, because error can compound
over time steps during policy execution in MDPs (due to
their sequential nature), it is harder for the agent to retain
knowledge from previously learned tasks, compared with in



a standard supervised learning setting like continual image
classification [7]. As such, we consider the design of lifelong
learning algorithms to be an open area of research in LLDM.

d) (T4) Robustness to Task Ordering: It is known that
a good curriculum [8] can result in more efficient multi-
task policy learning [9]. But in reality, we cannot assume
the robot always receives tasks in the order most beneficial
for efficient learning. Therefore, enabling the robot’s lifelong
learning performance to be robust to any task ordering is
critical for applying such agents in the real world.

e) (T5) Usage of Pretrained Models: In reality, it is rea-
sonable to pretrain a robot in factories before deployment [10].
However, it is not well-understood whether/how pretraining
could benefit subsequent lifelong learning in LLDM.

III. LIBERO

This section first introduces the procedural generation
pipeline in LIBERO that allows the never-ending creation
of tasks to facilitate lifelong learning research. Then we
describe the four task suites generated from this pipeline
that benchmark both disentangled and entangled knowledge
transfer in LLDM. Finally, we list the five algorithms and
three neural architectures we use to systematically study how
the algorithmic and the architectural designs impact the life-
long learning performance regarding the five research topics
mentioned in Section II.

A. Procedural Generation of Tasks

To facilitate research in lifelong learning settings where an
agent continually learns and adapts to new tasks, a procedural
generation pipeline is necessary that allows the creation of
an enormous number of tasks. However, it is non-trivial to
systematically scale up the number of tasks while keeping
created tasks relevant. LIBERO includes a procedural gen-
eration pipeline to use human activities to generate tasks in
the simulator. Human activities naturally provide a large set
of tasks that share common semantic concepts and motion
behaviors. This pipeline harnesses the activity data through
three modules that: 1) extract behavioral templates from the
language annotations from the activity datasets, and then
generate language instructions based on the object availability
in the simulator; 2) specify an initial state distribution of
objects and 3) specify task goals using a propositional formula
that align with the language instructions. We use a modular
robot manipulation simulator, Robosuite [11], that allows
easy integration of our generation pipeline. Figure 2 illustrates
an example of this pipeline, and each component is expanded
upon below.

a) Behavioral Templates and Instruction Generation:
Human activities serve as a fertile source of tasks that can
inspire and generate a vast number of manipulation tasks. Both
human activities and manipulation tasks require perceiving
visual observations and interacting with objects on a sophis-
ticated level, making activities a natural fit for the source
of task creation in robot manipulation. However, a direct
mapping from human activities to simulated manipulation

tasks is not feasible due to the differences in human and robot
embodiment and object model availability in the simulator.
As a workaround, we choose a large-scale activity dataset,
Ego4D [3], which includes a large variety of everyday ac-
tivities with language annotations. We pre-process the dataset
by extracting the language descriptions and then summarize
them into a large set of commonly used language templates.
After this pre-processing step, we use the templates and select
objects available in the simulator to generate a set of language
instructions. For example, we can generate “Open the drawer
of the cabinet” from the template “Open ...”.

b) Initial State Distribution (µ0): Once a set of language
instructions is generated, we create layouts of the scene so
that the instructions are feasible in a given scene config-
uration. We first select the scenes that match the objects
and behaviors mentioned in the language instructions. For
example, a kitchen scene is selected for a language instruction
Open the top drawer of the cabinet and put the bowl in
it. The initial state distribution µ0 is specified in a scene-
description language based on PDDL [4], [12] which includes
the object instances, initial placement distributions, and the
scene layout (See Figure 2-(A)). A list of predicates describing
the initial states of the objects is specified so the simulator can
load in the information in PDDL format and instantiates task
instances by sampling object configurations from the initial
state distributions (See Figure 2-(B)).

c) Goal Specifications (g): Based on the µ0 and the
language instruction, we specify a goal for each instruction
using a conjunction of predicates. Every predicate can be in
two forms: 1) unary predicates that describe the properties of
an object, such as Open or Turnoff, or 2) binary predicates
that describe spatial relations between objects, such as On or
In. Figure 2-(C) illustrates how the PDDL scene description
file specifies the goal through the conjunction of predicates,
and the simulator terminates when all predicates are true.

B. Task Suites

While procedural generation supports the generation of
an unlimited number of tasks, we offer a fixed set of task
suites because it enables apple-to-apple comparison for any
future work regarding the research topics in Section II.
Given this fixed set of tasks, we provide teleoperated expert
demonstrations, which will not be available for tasks beyond
the provided suites. The four task suites in LIBERO are
LIBERO-SPATIAL, LIBERO-OBJECT, LIBERO-GOAL, and
LIBERO-100. The first three task suites are well-curated
to disentangle the transfer of declarative and procedural
knowledge (as mentioned in (T1)), while LIBERO-100 is a
suite of 100 tasks with entangled knowledge transfer. Note that
the procedural generation pipeline can scale up the number of
tasks in the future with ease.

a) LIBERO-X: LIBERO includes three task suites,
each with 10 tasks 2 that are designed to evaluate differ-
ent aspects of distribution shift: LIBERO-SPATIAL (shift

2We use 10 tasks because that is enough to observe drastic forgetting, but
is few enough to maintain computation efficiency.



in spatial arrangements), LIBERO-OBJECT (shift in object
types), and LIBERO-GOAL (shift in task goals). The first
two suites evaluate the declarative knowledge transfer through
varying spatial arrangements or object categories, while the
third suite evaluates the procedural knowledge transfer through
varying task goals. Specifically, LIBERO-SPATIAL evaluates
if a policy can associate visual features and language with
knowledge of spatial understanding by using consistent object
layouts except for two bowls with unique arrangements in
each task. The goal for the robot is to identify one of the
bowls based on its spatial location or relation to other objects
and place it on the plate. LIBERO-OBJECT evaluates the
ability of a policy to associate visual features and language
instruction with object types. The tasks are to pick-place
unique objects from a list of objects with different categories.
Tasks in LIBERO-GOAL have the same layouts but different
goals, which keep the involved declarative knowledge constant
and entail different behaviors. Such designs allow evaluation
of a policy’s ability to transfer procedural knowledge. More
details are in Appendix C.

b) LIBERO-100: LIBERO-100 contains 100 tasks that
entail diverse object interactions and versatile motor skills.
In this paper, we split LIBERO-100 into 90 short-horizon
tasks and 10 long-horizon tasks, and we refer to the latter one
as LIBERO-LONG. We apply lifelong learning algorithms to
LIBERO-LONG in all studies while the 90 short-horizon tasks
serve as the data source for pre-training policies to study the
effect of pre-training models (T5).

C. Lifelong Learning Algorithms

To evaluate the efficacy of different algorithmic designs to
retain knowledge in LLDM, we study three representative
lifelong learning algorithms, Experience Replay (ER) [13],
Elastic Weight Consolidation (EWC) [7], and PACKNET [14].
ER is a memory-based method to store important past data
for new task learning. EWC is a regularization-based method
that constrains the neural network update. PACKNET is a
method based on a dynamic architecture that updates the
neural network architectures on the fly across different tasks.
We additionally implement two baseline methods, sequential
learning (SEQL) and multitask learning (MTL), which serve
as a lower bound and upper bound for lifelong learning
algorithms, respectively.

D. Neural Network Architectures

We examine three neural network architectures for policies
in LIBERO. These architectures, namely RESNET-RNN,
RESNET-T, and VIT-T, all follow a similar design that
integrates visual, temporal, and linguistic information. All
the linguistic information, the language instructions, are
encoded into language embeddings using Bert [15]. The
RESNET-RNN architecture is based on LSTMs and has been
shown to be effective in imitation learning for vision-based
manipulation [5]. It uses a ResNet as the visual backbone
that encodes per-step visual observations and an LSTM as the
temporal backbone to process a sequence of encoded visual

information. The language instruction is incorporated into the
ResNet features using the FiLM method [16] and added to the
LSTM inputs, respectively. RESNET-T architecture [17] uses
a similar ResNet-based visual backbone, but a transformer
decoder [18] as the temporal backbone to process outputs from
ResNet, which are a temporal sequence of visual tokens. The
language embedding is treated as a separate token in inputs
to the transformer alongside the visual tokens. The VIT-T
architecture [19], which is widely used in visual-language
tasks, uses a Vision Transformer (ViT) as the visual backbone
and a transformer decoder as the temporal backbone. The
language embedding is treated as a separate token in inputs
of both ViT and the transformer decoder. All the temporal
backbones output a latent vector for every decision-making
step. We compute the multi-modal distribution over manipu-
lation actions using a Gaussian-Mixture-Model (GMM) based
output head [5], [20]. In the end, a robot executes a policy by
sampling a continuous value for end-effector action from the
output distribution. Figure 3 visualizes the three architectures.

For all the lifelong learning algorithms and neural architec-
tures, we use behavioral cloning (BC) [21] to train policies
for individual tasks (See (??)). BC allows for efficient policy
learning such that we can study lifelong learning algorithms
without excessive computational resources. To train BC, we
provide 50 trajectories of high-quality demonstrations for ev-
ery single task in the generated task suites. The demonstrations
are collected by human experts through teleoperation with
3Dconnexion Spacemouse.

IV. EXPERIMENT OVERVIEW

Experiments are conducted as an initial study for the five
research topics mentioned in Section II. Specifically, we focus
on addressing the following research questions:

• Q1: How do different neural policies/lifelong learning
algorithms perform under specific distribution shifts?

• Q2: To what extent does neural architecture impact
knowledge transfer in LLDM, and are there any dis-
cernible patterns in the specialized capabilities of each
architecture?

• Q3: How do existing algorithms from the literature of
lifelong supervised learning perform on LLDM tasks?

• Q4: To what extent does language embedding affect
knowledge transfer in LLDM?

• Q5: How do different lifelong learning algorithms com-
pare in terms of robustness to task ordering in LLDM?

• Q6: Can supervised pretraining improve downstream
lifelong learning performance in LLDM?

The detailed results/findings are in Appendix D.

V. CONCLUSIONS

This paper introduces LIBERO, a new benchmark in robot
manipulation domain for LLDM research. LIBERO intro-
duces 130 tasks in 4 task suites that support studies on different
types of knowledge transfer. We conduct a comprehensive set
of experiments on policy and algorithm designs across 5 study
topics which sheds light on future research in LLDM.
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Fig. 2. This figure highlights the essential components of the procedural generation pipeline in LIBERO. (1) We extract behavioral templates from a large-
scale human activity dataset, Ego4D; (2) We generate language instructions by selecting the objects whose models are available in the simulators; (3) We
select a scene (shown on the left) that is appropriate for the language instruction, and programmatically generate a PDDL-based scene description file that
specifies: (A) the initial configuration distribution µ0 which includes object categories, placement regions; (B) the initial states of objects in the format of a
list of predicates; and (C) the goal in a logic proposition format that consists of predicates. The goal is satisfied when all the predicates are true. The upper
right part of the figure shows screenshots of initial configurations and the configuration when the goal is satisfied.

APPENDIX A
RELATED WORK

This section provides an overview of existing benchmarks for lifelong learning and robot learning. We refer the reader to
Appendix B-B for a detailed review of lifelong learning algorithms.

a) Lifelong Learning Benchmarks: Pioneering work has adapted standard vision or language datasets for studying LL. This
line of work includes image classification datasets like MNIST [22], CIFAR [23], and ImageNet [24]; segmentation datasets
like Core50 [25]; and natural language understanding datasets like GLUE [26] and SuperGLUE [27]. Besides supervised
learning datasets, video game benchmarks (e.g., Atari [28], XLand [29], and VisDoom [30]) in reinforcement learning (RL)
have also been used for studying LL. However, LL in standard supervised learning does not involve procedural knowledge
transfer, while RL problems in games do not represent human activities. ContinualWorld [31] modifies the 50 manipulation
tasks in MetaWorld for LL. CORA [32] builds four lifelong RL benchmarks based on Atari, Procgen [33], MiniHack [34],
and ALFRED [35]. Prior works have also analyzed different components in a LL agent [6], [36], [37], but they do not focus
on robot manipulation problems.

b) Robot Learning Benchmarks: A variety of robot learning benchmarks have been proposed to address challenges in
meta learning (MetaWorld, yu2020meta), causality learning (CausalWorld, ahmed2020causalworld), multi-task learning [38],
policy generalization to unseen objects [39], and compositional learning [40]. Compared to existing benchmarks in lifelong
learning and robot learning, LIBERO is uniquely designed to address the research topics of LLDM through a carefully
curated set of task suites. The benchmark includes a large number of tasks based on everyday human activities that feature rich
interactive behaviors with a diverse range of objects. Additionally, the tasks in LIBERO are procedurally generated, making
the benchmark scalable and adaptable. Moreover, the provided high-quality human demonstration dataset in LIBERO supports
and encourages learning efficiency.

APPENDIX B
IMPLEMENTED NEURAL ARCHITECTURES AND LIFELONG LEARNING ALGORITHMS

A. Neural Architectures

In Section III-D, we outlined the neural network architectures utilized in our experiments, namely RESNET-RNN, RESNET-
T, and VIT-T. The specifics of each architecture are illustrated in Figure 3. Furthermore, Table II, III, and IV display the
hyperparameters for the architectures used throughout all of our experiments.



Neural Policy Arch.
RESNET-RNN
RESNET-T
VIT-T

Lifelong Learning Algo.

SEQL
EWC [7]
ER [13]
PACKNET [14]
MTL

TABLE I
THE IMPLEMENTED NEURAL POLICY ARCHITECTURES AND THE LIFELONG LEARNING ALGORITHMS IN LIBERO.
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Fig. 3. We provide visualizations of the architectures for RESNET-RNN, RESNET-T, and VIT-T, respectively. It is worth noting that each model architecture
incorporates language embedding in distinct ways.
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Fig. 4. The image encoders: ResNet-based encoder and the vision transformer-based encoder.

Variable Value

resnet_image_embed_size 64
text_embed_size 32
rnn_hidden_size 1024
rnn_layer_num 2

rnn_dropout 0.0
TABLE II

HYPER PARAMETERS OF RESNET-RNN.

Variable Value

extra_info_hidden_size 128
img_embed_size 64

transformer_num_layers 4
transformer_num_heads 6

transformer_head_output_size 64
transformer_mlp_hidden_size 256

transformer_dropout 0.1
transformer_max_seq_len 10

TABLE III
HYPER PARAMETERS OF RESNET-T.



Variable Value

extra_info_hidden_size 128
img_embed_size 128

spatial_transformer_num_layers 7
spatial_transformer_num_heads 8

spatial_transformer_head_output_size 120
spatial_transformer_mlp_hidden_size 256

spatial_transformer_dropout 0.1
spatial_down_sample_embed_size 64
temporal_transformer_input_size null

temporal_transformer_num_layers 4
temporal_transformer_num_heads 6

temporal_transformer_head_output_size 64
temporal_transformer_mlp_hidden_size 256

temporal_transformer_dropout 0.1
temporal_transformer_max_seq_len 10

TABLE IV
HYPER PARAMETERS OF VIT-T.

B. Lifelong Learning Algorithms

Lifelong learning (LL) is a field of study that aims to understand how an agent can continually acquire and retain knowledge
over an infinite sequence of tasks without catastrophically forgetting previous knowledge. Recent literature proposes three main
approaches to address the problem of catastrophic forgetting in deep learning.

The dynamic architecture approach gradually expands the learning model to incorporate new knowledge [14], [41]–[44].
Regularization-based methods, on the other hand, regularize the learner to a previous checkpoint when it learns a new task [7],
[45], [46]. Rehearsal methods save exemplar data from prior tasks and replay them with new data to consolidate the agent’s
memory [13], [47]–[49]. For a comprehensive review of LL methods, we refer readers to surveys [50], [51].

The following paragraphs provide details on the three lifelong learning algorithms that we have implemented.
a) ER: Experience Replay (ER) [13] is a rehearsal-based approach that maintains a memory buffer of samples from

previous tasks and leverages it to learn new tasks. After the completion of policy learning for a task, ER stores a portion of the
data into a storage memory. When training a new task, ER samples data from the memory and combines it with the training
data from the current task so that the training data approximately represents the empirical distribution of all-task data. In our
implementation, we use a replay buffer to store a portion of the training data (up to 1000 trajectories) after training each task.
For every training iteration during the training of a new task, we uniformly sample a fixed number of replay data from the
memory (32 trajectories) along with each batch of training data from the new task.

b) EWC: Elastic Weight Consolidation(EWC) [7] is a regularization-based approach that add a regularization term that
constraints neural network update to the original single-task learning objective. Specifically, EWC uses the Fisher information
matrix that quantify the importance of every neural netwrk parameter. The loss function for task k is:

LEWC
k (θ) = LBC

K (θ) +
∑
i

λ

2
Fi

(
θi − θ∗k−1,i

)2
,

where λ is a penalty hyperparameter, and the coefficient Fi is the diagonal of the Fisher information matrix: Fk =
Es∼Dk

Ea∼pθ(·|s) (∇θk log pθk(a|s))
2. In this work, we use the online update version of EWC that updates the Fisher information

matrix using exponential moving average along the lifelong learning process, and use the empirical estimation of above
Fisher information matrix to stabilize the estimation. Formally, the actually used estimation of Fisher Information Matrix is
F̃k = γFk−1+(1−γ)Fk, where Fk = E(s,a)∼Dk

(∇θk log pθk(a|s))
2 and k is the task number. We set γ = 0.9 and λ = 5 ·104.

c) PACKNET: PACKNET [14] is a dynamic architecture-based approach that aims to prevent changes to parameters
that are important for previous tasks in lifelong learning. To achieve this, PACKNET iteratively trains, prunes, fine-tunes, and
freezes parts of the network. The method theoretically completely avoids catastrophic forgetting, but for each new task, the
number of available parameters shrinks. The pruning process in PACKNET involves two stages. First, the network is trained,
and at the end of the training, a fixed proportion of the most important parameters (25% in our implementation) are chosen,
and the rest are pruned. Second, the selected part of the network is fine-tuned and then frozen. In our implementation, we
follow the original paper [14] and do not train all biases and normalization layers. We perform the same number of fine-tuning
epochs as for training (50 epochs in our implementation). Note that all evaluation metrics are calculated before the fine-tuning
stage.



APPENDIX C
LIBERO TASK SUITE DESIGNS

A. Task Suites

We visualize all the tasks from the four task suites in Figure 5- 8. Figure 5 visualizes the initial states since the task goals
are always the same. All the figures visualize the goal states of tasks except for Figure 5, which visualizes the initial states
since the task goals are always the same.

Fig. 5. LIBERO-SPATIAL

Fig. 6. LIBERO-OBJECT



Fig. 7. LIBERO-GOAL



Fig. 8. LIBERO-100



B. PDDL-based Scene Description File

Here we visualize the whole content of an example scene description file based on PDDL. This file corresponds to the task
shown in Figure 2.

Example task: Open the top drawer of the cabinet and put the bowl in it.

( d e f i n e ( problem LIBERO_Ki tchen_Tab le top_Manipu la t ion )
( : domain r o b o s u i t e )
( : l a n g u a g e open t h e t o p drawer o f t h e c a b i n e t and p u t t h e bowl i n i t )

( : r e g i o n s
( w o o d e n _ c a b i n e t _ i n i t _ r e g i o n

( : t a r g e t k i t c h e n _ t a b l e )
( : r a n g e s (

( −0 .01 −0.31 0 . 0 1 −0 .29)
)

)
( : y a w _ r o t a t i o n (

( 3 . 1 4 1 5 9 3 . 1 4 1 5 9 )
)

)
)
( a k i t a _ b l a c k _ b o w l _ i n i t _ r e g i o n

( : t a r g e t k i t c h e n _ t a b l e )
( : r a n g e s (

( −0 .025 −0.025 0 .025 0 . 0 2 5 )
)

)
( : y a w _ r o t a t i o n (

( 0 . 0 0 . 0 )
)

)
)
( p l a t e _ i n i t _ r e g i o n

( : t a r g e t k i t c h e n _ t a b l e )
( : r a n g e s (

( −0 .025 0 .225 0 .025 0 . 2 7 5 )
)

)
( : y a w _ r o t a t i o n (

( 0 . 0 0 . 0 )
)

)
)
( t o p _ s i d e

( : t a r g e t wooden_cab ine t_1 )
)
( t o p _ r e g i o n

( : t a r g e t wooden_cab ine t_1 )
)
( m i d d l e _ r e g i o n

( : t a r g e t wooden_cab ine t_1 )
)
( b o t t o m _ r e g i o n

( : t a r g e t wooden_cab ine t_1 )
)

)



( : f i x t u r e s
k i t c h e n _ t a b l e − k i t c h e n _ t a b l e
wooden_cab ine t_1 − wooden_cab ine t

)

( : o b j e c t s
a k i t a _ b l a c k _ b o w l _ 1 − a k i t a _ b l a c k _ b o w l
p l a t e _ 1 − p l a t e

)

( : o b j _ o f _ i n t e r e s t
wooden_cab ine t_1
a k i t a _ b l a c k _ b o w l _ 1

)

( : i n i t
( On a k i t a _ b l a c k _ b o w l _ 1 k i t c h e n _ t a b l e _ a k i t a _ b l a c k _ b o w l _ i n i t _ r e g i o n )
( On p l a t e _ 1 k i t c h e n _ t a b l e _ p l a t e _ i n i t _ r e g i o n )
( On wooden_cab ine t_1 k i t c h e n _ t a b l e _ w o o d e n _ c a b i n e t _ i n i t _ r e g i o n )

)

( : g o a l
( And ( Open w o o d e n _ c a b i n e t _ 1 _ t o p _ r e g i o n )

( In a k i t a _ b l a c k _ b o w l _ 1 w o o d e n _ c a b i n e t _ 1 _ t o p _ r e g i o n )
)

)

)



APPENDIX D
EXPERIMENT

Experiments are conducted as an initial study for the five research topics mentioned in Section II. Specifically, we focus on
addressing the following research questions:

• Q1: How do different neural policies/lifelong learning algorithms perform under specific distribution shifts?
• Q2: To what extent does neural architecture impact knowledge transfer in LLDM, and are there any discernible patterns

in the specialized capabilities of each architecture?
• Q3: How do existing algorithms from the literature of lifelong supervised learning perform on LLDM tasks?
• Q4: To what extent does language embedding affect knowledge transfer in LLDM?
• Q5: How do different lifelong learning algorithms compare in terms of robustness to task ordering in LLDM?
• Q6: Can supervised pretraining improve downstream lifelong learning performance in LLDM?

In the following, we first overview the experimental setup and introduce the evaluation metrics. Then we provide the empirical
evaluations and findings for each of the research questions.

A. Experimental Setup

We consider five lifelong learning algorithms: SEQL the sequential learning baseline where the agent learns each task
in the sequence directly without any further consideration, MTL the multitask learning baseline where the agent learns all
tasks in the sequence simultaneously, the regularization-based method EWC [7], the replay-based method ER [13], and the
dynamic architecture-based method PACKNET [14]. SEQL and MTL can be seen as approximations of the lower and upper
bounds respectively for any lifelong learning algorithm. The other three methods represent the three primary categories of
lifelong learning algorithms. For the neural architectures, we consider three vision-language policy architectures: RESNET-
RNN, RESNET-T, VIT-T, which differ in how spatial or temporal information is aggregated (See Appendix B-A for more
details). For each task, the agent is trained over 50 epochs on the 50 demonstration trajectories. We evaluate the agent’s average
success rate over 20 test rollout trajectories of a maximum length of 600 every 5 epochs. We use Adam optimizer [52] with
a batch size of 32, and a cosine scheduled learning rate from 0.0001 to 0.00001 for each task. Following the convention
of Robomimic [5], we pick the model checkpoint that achieves the best success rate as the final policy for a given task.
After 50 epochs of training, the agent with the best checkpoint is then evaluated on all previously learned tasks, with 20 test
rollout trajectories for each task. All policy networks are matched in Floating Point Operations Per Second (FLOPS): all policy
architectures have ∼13.5G FLOPS. For each combination of algorithm, policy architecture, and task suite, we run the lifelong
learning method 3 times with random seeds {100, 200, 300} (180 experiments in total). See Table I for the implemented
algorithms and architectures.

B. Evaluation Metrics

We report three metrics: FWT (forward transfer) [53], NBT (negative backward transfer), and AUC (area under the success
rate curve). All metrics are computed in terms of success rate, as previous literature has shown that the success rate is a more
reliable metric than training loss for manipulation policies [5] (Detailed explanation in Appendix D-F). Lower NBT means a
policy has better performance in the previously seen tasks, higher FWT means a policy learns faster on a new task, and higher
AUC means an overall better performance considering both NBT and FWT. Specifically, denote ci,j,e as the agent’s success
rate on task j when it learned over i− 1 previous tasks and has just learned e epochs (e ∈ {0, 5, . . . , 50}) on task i. Let ci,i
be the best success rate over all evaluated epochs e for the current task i (i.e., ci,i = maxe ci,i,e). Then, we find the earliest
epoch e∗i in which the agent achieves the best performance on task i (i.e., e∗i =e ci,i,ei = ci,i), and assume for all e ≥ e∗i ,
ci,i,e = ci,i.3 Given a different task j ̸= i, we define ci,j = ci,j,e∗i . Then the three metrics are defined as:
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figureFWTk measures how fast the agent
learns on task k. NBTk measures how much

knowledge about task k the agent retains.
AUCk summarizes both metrics for task k.
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3In practice, it’s possible that the agent’s performance on task i is not monotonically increasing due to the variance of learning. But we keep the best
checkpoint among those saved at epochs {e} as if the agent stops learning after e∗i .



C. Experimental Results

We present empirical results to address the research questions. Please refer to Appendix D-D for the full results across all
algorithms, policy architectures, and task suites.

a) Study on the Policy’s Neural Architectures (Q1, Q2) : Table V reports the agent’s lifelong learning performance using
the three different neural architectures on the four task suites. Results are reported when ER and PACKNET are used as they
demonstrate the best lifelong learning performance across all task suites.

Policy Arch. ER PACKNET

FWT(↑) NBT(↓) AUC(↑) FWT(↑) NBT(↓) AUC(↑)

LIBERO-LONG

RESNET-RNN 0.16 ± 0.02 0.16 ± 0.02 0.08 ± 0.01 0.13 ± 0.00 0.21 ± 0.01 0.03 ± 0.00
RESNET-T 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00
VIT-T 0.38 ± 0.05 0.29 ± 0.06 0.25 ± 0.02 0.36 ± 0.01 0.14 ± 0.01 0.34 ± 0.01

LIBERO-SPATIAL

RESNET-RNN 0.40 ± 0.02 0.29 ± 0.02 0.29 ± 0.01 0.27 ± 0.03 0.38 ± 0.03 0.06 ± 0.01
RESNET-T 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
VIT-T 0.63 ± 0.01 0.29 ± 0.02 0.50 ± 0.02 0.57 ± 0.04 0.15 ± 0.00 0.59 ± 0.03

LIBERO-OBJECT

RESNET-RNN 0.30 ± 0.01 0.27 ± 0.05 0.17 ± 0.05 0.29 ± 0.02 0.35 ± 0.02 0.13 ± 0.01
RESNET-T 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05
VIT-T 0.70 ± 0.02 0.28 ± 0.01 0.57 ± 0.01 0.58 ± 0.03 0.18 ± 0.02 0.56 ± 0.04

LIBERO-GOAL

RESNET-RNN 0.41 ± 0.00 0.35 ± 0.01 0.26 ± 0.01 0.32 ± 0.03 0.37 ± 0.04 0.11 ± 0.01
RESNET-T 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
VIT-T 0.57 ± 0.00 0.40 ± 0.02 0.38 ± 0.01 0.69 ± 0.02 0.08 ± 0.01 0.76 ± 0.02

TABLE V
PERFORMANCE OF THE THREE NEURAL ARCHITECTURES USING ER AND PACKNET ON THE FOUR TASK SUITES. RESULTS ARE AVERAGED OVER THREE
SEEDS AND WE REPORT THE MEAN AND STANDARD ERROR. THE BEST PERFORMANCE IS BOLDED, AND COLORED IN PURPLE IF THE IMPROVEMENT IS

STATISTICALLY SIGNIFICANT OVER OTHER NEURAL ARCHITECTURES, WHEN A TWO-TAILED, STUDENT’S T-TEST UNDER EQUAL SAMPLE SIZES AND
UNEQUAL VARIANCE IS APPLIED WITH A p-VALUE OF 0.05.

Findings: First, we observe that RESNET-T and VIT-T work much better than RESNET-RNN on average, indicating that
using a transformer on the “temporal" level could be a better option than using an RNN model. Second, the performance
difference among different architectures depends on the underlying lifelong learning algorithm. If PACKNET (a dynamic
architecture approach) is used, we observe no significant performance difference between RESNET-T and VIT-T except on the
LIBERO-LONG task suite where VIT-T performs much better than RESNET-T. In contrast, if ER is used, we observe that
RESNET-T performs better than VIT-T on all task suites except LIBERO-OBJECT. This potentially indicates that the ViT
architecture is better at processing visual information with more object varieties than the ResNet architecture when the network
capacity is sufficiently large (See the MTL results in Table VIII on LIBERO-OBJECT as the supporting evidence). The above
findings shed light on how one can improve architecture design for better processing of spatial and temporal information in
LLDM.

Study on Lifelong Learning Algorithms (Q1, Q3) Table VI reports the lifelong learning performance of the three lifelong
learning algorithms, together with the SEQL and MTL baselines. All experiments use the same RESNET-T architecture as it
performs the best across all policy architectures.

Findings: We observed a series of interesting findings that could potentially benefit future research on algorithm design for
LLDM: 1) SEQL shows the best FWT over all task suites. This is surprising since it indicates all lifelong learning algorithms
we consider actually hurt forward transfer; 2) PACKNET outperforms other lifelong learning algorithms on LIBERO-X but is
outperformed by ER significantly on LIBERO-LONG, mainly because of low forward transfer. This confirms that the dynamic
architecture approach is good at preventing forgetting. But since PACKNET splits the network into different sub-networks, the
essential capacity of the network for learning any individual task is smaller. Therefore, we conjecture that PACKNET is not
rich enough to learn on LIBERO-LONG; 3) EWC works worse than SEQL, showing that the regularization on the loss term
can actually impede the agent’s performance on LLDM problems (See Appendix D-F); and 4) ER, the rehearsal method, is
robust across all task suites.

Study on Language Embeddings as the Task Identifier (Q4) To investigate to what extent language embedding play a role
in LLDM, we compare the performance of the same lifelong learner using four different pretrained language embeddings.
Namely, we choose BERT [15], CLIP [54], GPT-2 [55] and the Task-ID embedding. Task-ID embeddings are produced by
feeding a string such as “Task 5” into a pretrained BERT model.



Lifelong Algo. FWT(↑) NBT(↓) AUC(↑) FWT(↑) NBT(↓) AUC(↑)

LIBERO-LONG LIBERO-SPATIAL

SEQL 0.54 ± 0.01 0.63 ± 0.01 0.15 ± 0.00 0.72 ± 0.01 0.81 ± 0.01 0.20 ± 0.01
ER 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01
EWC 0.13 ± 0.02 0.22 ± 0.03 0.02 ± 0.00 0.23 ± 0.01 0.33 ± 0.01 0.06 ± 0.01
PACKNET 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
MTL 0.48 ± 0.01 0.83 ± 0.00

LIBERO-OBJECT LIBERO-GOAL

SEQL 0.78 ± 0.04 0.76 ± 0.04 0.26 ± 0.02 0.77 ± 0.01 0.82 ± 0.01 0.22 ± 0.00
ER 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02
EWC 0.56 ± 0.03 0.69 ± 0.02 0.16 ± 0.02 0.32 ± 0.02 0.48 ± 0.03 0.06 ± 0.00
PACKNET 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
MTL 0.54 ± 0.02 0.80 ± 0.01

TABLE VI
PERFORMANCE OF THREE LIFELONG ALGORITHMS AND THE SEQL AND MTL BASELINES ON THE FOUR TASK SUITES, WHERE THE POLICY IS FIXED TO

BE RESNET-T. RESULTS ARE AVERAGED OVER THREE SEEDS AND WE REPORT THE MEAN AND STANDARD ERROR. THE BEST PERFORMANCE IS
BOLDED, AND COLORED IN PURPLE IF THE IMPROVEMENT IS STATISTICALLY SIGNIFICANT OVER OTHER ALGORITHMS, WHEN A TWO-TAILED,

STUDENT’S T-TEST UNDER EQUAL SAMPLE SIZES AND UNEQUAL VARIANCE IS APPLIED WITH A p-VALUE OF 0.05.

Embedding Type Dimension FWT(↑) NBT(↓) AUC(↑)

BERT 768 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01
CLIP 512 0.52 ± 0.00 0.34 ± 0.01 0.35 ± 0.01
GPT-2 768 0.46 ± 0.01 0.34 ± 0.02 0.30 ± 0.01
Task-ID 768 0.50 ± 0.01 0.37 ± 0.01 0.33 ± 0.01

TABLE VII
PERFORMANCE OF A LIFELONG LEARNER USING FOUR DIFFERENT LANGUAGE EMBEDDINGS ON LIBERO-LONG, WHERE WE FIX THE POLICY

ARCHITECTURE TO RESNET-T AND THE LIFELONG LEARNING ALGORITHM TO ER. THE TASK-ID EMBEDDINGS ARE RETRIEVED BY FEEDING “TASK +
ID" INTO A PRETRAINED BERT MODEL. RESULTS ARE AVERAGED OVER THREE SEEDS AND WE REPORT THE MEAN AND STANDARD ERROR. THE BEST
PERFORMANCE IS BOLDED. NOTE THAT NO STATISTICALLY SIGNIFICANT DIFFERENCE IS OBSERVED AMONG THE DIFFERENT LANGUAGE EMBEDDINGS.

Findings: From Table VII, we observe that no statistically significant difference exists among the different language
embeddings. More interestingly, we find that the Task-ID embedding is equally competitive against other embeddings that are
supposed to possess richer semantic meaning about the task. Such findings suggest there exists much room for improving the
performance by more explicitly leveraging the semantic information inside the task description. As there exists no statistically
significant difference, we choose BERT embeddings as the default task embedding.

Study on Task Ordering (Q5) We apply ER and PACKNET to five different task orderings on LIBERO-LONG, to investigate
how robust these methods are to the task ordering.

Findings: From Figure 16, we observe that indeed different task ordering could result in very different performances for the
same algorithm. Specifically, such difference is statistically significant for PACKNET.

Study on How Pretraining Affects Downstream LLDM (Q6) Fig 9 reports the results on LIBERO-LONG of five combinations
of algorithms and policy architectures, when the underlying model is pretrained on the 90 short-horizion tasks in LIBERO-100
or learned from scratch. For pretraining, we apply behavioral cloning on the 90 tasks using the three policy architectures for
50 epochs. We save a checkpoint every 5 epochs of training and then pick the checkpoint for each architecture that has the
best performance as the pretrained model for downstream LLDM.
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0.2

0.0

w/ pretraining w/o pretraining multitask

ER
ResNet-RNN

ER
ResNet-T

ER
ViT-T

EWC
ResNet-T

PackNet
ResNet-T

Success Rate

Fig. 9. Performance of different combinations of algorithms and architectures without pretraining, with pretraining for (T5). We also include the multi-task
learning performance for each architecture for reference.



Findings: We observe that the basic supervised pretraining can hurt the model’s downstream lifelong learning performance.
This, together with the results seen in Table VI (e.g., naive sequential fine-tuning has better forward transfer than when lifelong
learning algorithms are applied), indicates that better pretraining techniques are needed.

b) Attention Visualization:: To better understand what type of knowledge the agent forgets during the lifelong learning
process, we visualize the agent’s attention map on each observed image input. The visualized saliency maps and the discussion
can be found in Appendix D-G.

D. Full Results

We provide the full results across three different lifelong learning algorithms (e.g., EWC, ER, PACKNET) and three different
policy architectures (e.g., RESNET-RNN, RESNET-T, VIT-T) on the four task suites in Table VIII.

Algo. Policy Arch. FWT(↑) NBT(↓) AUC(↑) FWT(↑) NBT(↓) AUC(↑)

LIBERO-LONG LIBERO-SPATIAL

SEQL
RESNET-RNN 0.24 ± 0.02 0.28 ± 0.01 0.07 ± 0.01 0.50 ± 0.01 0.61 ± 0.01 0.14 ± 0.01
RESNET-T 0.54 ± 0.01 0.63 ± 0.01 0.15 ± 0.00 0.72 ± 0.01 0.81 ± 0.01 0.20 ± 0.01
VIT-T 0.44 ± 0.04 0.50 ± 0.05 0.13 ± 0.01 0.63 ± 0.02 0.76 ± 0.01 0.16 ± 0.01

ER
RESNET-RNN 0.16 ± 0.02 0.16 ± 0.02 0.08 ± 0.01 0.40 ± 0.02 0.29 ± 0.02 0.29 ± 0.01
RESNET-T 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01
VIT-T 0.38 ± 0.05 0.29 ± 0.06 0.25 ± 0.02 0.63 ± 0.01 0.29 ± 0.02 0.50 ± 0.02

EWC
RESNET-RNN 0.02 ± 0.00 0.04 ± 0.01 0.00 ± 0.00 0.14 ± 0.02 0.23 ± 0.02 0.03 ± 0.00
RESNET-T 0.13 ± 0.02 0.22 ± 0.03 0.02 ± 0.00 0.23 ± 0.01 0.33 ± 0.01 0.06 ± 0.01
VIT-T 0.05 ± 0.02 0.09 ± 0.03 0.01 ± 0.00 0.32 ± 0.03 0.48 ± 0.03 0.06 ± 0.01

PACKNET
RESNET-RNN 0.13 ± 0.00 0.21 ± 0.01 0.03 ± 0.00 0.27 ± 0.03 0.38 ± 0.03 0.06 ± 0.01
RESNET-T 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
VIT-T 0.36 ± 0.01 0.14 ± 0.01 0.34 ± 0.01 0.57 ± 0.04 0.15 ± 0.00 0.59 ± 0.03

MTL
RESNET-RNN 0.20 ± 0.01 0.61 ± 0.00
RESNET-T 0.48 ± 0.01 0.83 ± 0.00
VIT-T 0.46 ± 0.00 0.79 ± 0.01

LIBERO-OBJECT LIBERO-GOAL

SEQL
RESNET-RNN 0.48 ± 0.03 0.53 ± 0.04 0.15 ± 0.01 0.61 ± 0.01 0.73 ± 0.01 0.16 ± 0.00
RESNET-T 0.78 ± 0.04 0.76 ± 0.04 0.26 ± 0.02 0.77 ± 0.01 0.82 ± 0.01 0.22 ± 0.00
VIT-T 0.76 ± 0.03 0.73 ± 0.03 0.27 ± 0.02 0.75 ± 0.01 0.85 ± 0.01 0.20 ± 0.01

ER
RESNET-RNN 0.30 ± 0.01 0.27 ± 0.05 0.17 ± 0.05 0.41 ± 0.00 0.35 ± 0.01 0.26 ± 0.01
RESNET-T 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02
VIT-T 0.70 ± 0.02 0.28 ± 0.01 0.57 ± 0.01 0.57 ± 0.00 0.40 ± 0.02 0.38 ± 0.01

EWC
RESNET-RNN 0.17 ± 0.04 0.23 ± 0.04 0.06 ± 0.01 0.16 ± 0.01 0.22 ± 0.01 0.06 ± 0.01
RESNET-T 0.56 ± 0.03 0.69 ± 0.02 0.16 ± 0.02 0.32 ± 0.02 0.48 ± 0.03 0.06 ± 0.00
VIT-T 0.57 ± 0.03 0.64 ± 0.03 0.23 ± 0.00 0.32 ± 0.04 0.45 ± 0.04 0.07 ± 0.01

PACKNET
RESNET-RNN 0.29 ± 0.02 0.35 ± 0.02 0.13 ± 0.01 0.32 ± 0.03 0.37 ± 0.04 0.11 ± 0.01
RESNET-T 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
VIT-T 0.58 ± 0.03 0.18 ± 0.02 0.56 ± 0.04 0.69 ± 0.02 0.08 ± 0.01 0.76 ± 0.02

MTL
RESNET-RNN 0.10 ± 0.03 0.59 ± 0.00
RESNET-T 0.54 ± 0.02 0.80 ± 0.01
VIT-T 0.78 ± 0.02 0.82 ± 0.01

TABLE VIII
WE PRESENT THE FULL RESULTS OF ALL NETWORKS AND ALGORITHMS ON ALL FOUR TASK SUITES. FOR EACH TASK SUITE, WE HIGHLIGHT THE TOP
THREE AUC SCORES AMONG THE COMBINATIONS OF THE THREE LIFELONG LEARNING ALGORITHMS AND THE THREE NEURAL ARCHITECTURES. THE
BEST THREE RESULTS ARE HIGHLIGHTED IN MAGENTA (THE BEST), LIGHT MAGENTA (THE SECOND BEST), AND SUPER LIGHT MAGENTA (THE THIRD

BEST), RESPECTIVELY.

To better illustrate the performance of each lifelong learning agent throughout the learning process, we present plots that
show how the agent’s performance evolves over the stream of tasks. Firstly, we provide plots that compare the performance
of the agent using different lifelong learning algorithms while fixing the policy architecture (refer to Figure 10,11, and 12).
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Fig. 10. We compare the performance of different algorithms using the RESNET-RNN policy architecture in Figure 10. The y-axis represents the success
rate, and the x-axis shows the agent’s performance on each of the 10 tasks in a specific task suite over the course of learning. For example, the upper-left
plot in the figure displays the agent’s performance on the first task as it learns the 10 tasks sequentially.
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Fig. 11. Comparison of different algorithms using the RESNET-T policy architecture. The y-axis represents the success rate, while the x-axis shows the
agent’s performance on each of the 10 tasks in a given task suite during the course of learning. For example, the plot in the upper-left corner depicts the
agent’s performance on the first task as it learns the 10 tasks sequentially.

Next, we provide plots that compare the performance of the agent using different policy architectures while fixing the lifelong
learning algorithm (refer to Figure13, 14, and 15)
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Fig. 12. Comparison of different algorithms using the VIT-T policy architecture. The success rate is represented on the y-axis, while the x-axis shows the
agent’s performance on the 10 tasks in a given task suite over the course of learning. For instance, the plot in the upper-left corner illustrates the agent’s
performance on the first task when learning the 10 tasks sequentially.
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Fig. 13. Comparison of different architectures with the EWC algorithm. The y-axis is the success rate, while the x-axis shows the agent’s performance on
the 10 tasks in a given task suite over the course of learning. For instance, the upper-left plot shows the agent’s performance on the first task when learning
the 10 tasks sequentially.
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Fig. 14. Comparison of different architectures with the ER algorithm. The y-axis is the success rate, while the x-axis shows the agent’s performance on the
10 tasks in a given task suite ver the course of learning. For instance, the upper-left plot shows the agent’s performance on the first task when learning the
10 tasks sequentially.
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Fig. 15. Comparison of different architectures with the PACKNET algorithm. The y-axis is the success rate, while the x-axis shows the agent’s performance
on the 10 tasks in a given task suite over the course of learning. For instance, the upper-left plot shows the agent’s performance on the first task when learning
the 10 tasks sequentially.



E. Study on task ordering (Q4)

Figure 16 shows the result of the study on Q4. For all experiments in this study, we used RESNET-T as the neural architecture
and evaluated both ER and PACKNET. As the figure illustrates, the performance of both algorithms varies across different task
orderings. This finding highlights an important direction for future research: developing algorithms or architectures that are
robust to varying task orderings.

AUC (5 orderings)
ER + ResNet-T

AUC (5 orderings)
PackNet + ResNet-T

Success Rate
0.4

0.2

Fig. 16. Performance of ER and PACKNET using RESNET-T on five different task orderings. An error bar shows the performance standard deviation for a
fixed ordering.

Findings: From Figure 16, we observe that indeed different task ordering could result in very different performances for the
same algorithm. Specifically, such difference is statistically significant for PACKNET.

F. Loss v.s. Success Rates

We demonstrate that behavioral cloning loss can be a misleading indicator of task success rate in this section. In supervised
learning tasks like image classifications, lower loss often indicates better prediction accuracy. However, this is not, in general,
true for decision-making tasks. This is because errors can compound until failures during executing a robot [56]. Figure 17, 11
and 12 plots the training loss and success rates of three lifelong learning methods (ER, EWC, and PACKNET) for comparison.
We evaluate the three algorithms on four task suites using three different neural architectures.

Findings: We observe that though sometimes EWC has the lowest loss, it did not achieve good success rate. ER, on the
other hand, can have the highest loss but perform better than EWC. In conclusion, success rates, instead of behavioral cloning
loss, should be the right metric to evaluate whether a model checkpoint is good or not.
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Fig. 17. Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task suites with RESNET-RNN policy. The first (second) row
shows the loss (success rate) of the agent on task i throughout the LLDM procedure.
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Fig. 18. Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task suites with RESNET-T policy. The first (second) row shows
the loss (success rate) of the agent on task i throughout the LLDM procedure.
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Fig. 19. Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task suites with VIT-T policy. The first (second) row shows the
loss (success rate) of the agent on task i throughout the LLDM procedure.



G. Attention Visualization

It is also important to visualize the behavior of the robot and its attention maps during the completion of tasks in the lifelong
learning process to give us intuition and qualitative feedback on the performance of different algorithms and architectures. We
visualize the attention maps of learned policies with greydanus2018visualizing and compare them in different studies as in
D-C to see if the robot correctly pays attention to the right regions of interest in each task.

a) Perturbation-based attention visualization:: We use a perturbation-based method [57] to extract attention maps from
agents. Given an input image I , the method applies a Gaussian filter to a pixel location (i, j) to blur the image partially, and
produces the perturbed image Φ(I, i, j). Denote the learned policy as π and the inputs to the spatial module (e.g., the last
latent representation of resnet or ViT encoder) πu(I) for image I . Then we define the saliency score as the Euclidean distance
between the latent representations of the original and the blurred images:

Sπ(i, j) =
1

2

∣∣∣∣∣∣∣∣πu(I)− πu(Φ(I, i, j))

∣∣∣∣∣∣∣∣2. (2)

Intuitively, Sπ(i, j) describes how much removing information from the region around location (i, j) changes the policy. In
other words, a large Sπ(i, j) indicates that the information around pixel (i, j) is important for the learning agent’s decision-
making. Instead of calculating the score for every pixel, [57] found that computing a saliency score for pixel i mod 5 and j
mod 5 produced good saliency maps at lower computational costs for Atari games. The final saliency map P is normalized as
P (i, j) = Sπ(i,j)∑

i,j Sπ(i,j)
.

We provide the visualization and our analysis on the following pages.



Different Task Suites

Findings: Figure 20 shows attention visualization for 12 tasks across 4 task suites (e.g., 3 tasks per suite). We observe that:
1) policies pay more attention to the robot arm and the target placement area than the target object.
2) sometimes the policy pays attention to task-irrelevant areas, such as the blank area on the table.

These observations demonstrate that the learned policy use perceptual data for decision-making in a very different way from
how humans do. The robot policies tends to spuriously correlate task-irrelevant features with actions, a major reason why the
policies overfit to the tasks and do not generalize well across tasks.



pick up the black 
bowl on the wooden 
cabinet and place it 
on the plate

LIBERO-SPATIAL

LIBERO-OBJECT

LIBERO-GOAL

LIBERO-LONG

pick up the black
bowl in the top
drawer of the
cabinet and place it
on the plate

pick up the black 
bowl between the 
plate and the 
ramekin and place it 
on the plate

pick up the ketchup 
and place it in the 
basket

pick up the alphabet 
soup and place it in 
the basket

put the wine bottle 
on the rack

put the bowl on top 
of the cabinet

open the middle 
drawer of the 
cabinet

put the white mug on 
the left plate and 
put the yellow and 
white mug on the 
right plate

put both the 
alphabet soup and 
the tomato sauce in 
the basket

put the yellow and 
white mug in the 
microwave and close 
it

pick up the orange 
juice and place it 
in the basket

Fig. 20. Attention map comparison among different task suites with ER and RESNET-T. Each row corresponds to a task suite.



The Same Task over the Course of Lifelong Learning

put both the alphabet soup and the tomato sauce in the basket
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Fig. 21. Attention map of the same state of the task put both the alphabet soup and the tomato sauce in the basket from LIBERO-LONG during lifelong
learning. Each row visualizes how the attention maps change on the first task with one of the LL algorithms (ER and PACKNET) and one of the neural
architectures (RESNET-T and VIT-T). Initial policy is the policy that is trained on the first task. And all the following attention maps correspond to policies
after training on the third, fifth, and the tenth tasks.

Findings: Figure 21 shows attention visualizations from policies trained with ER and PACKNET using the architectures
RESNET-T and VIT-T respectively. We observe that:

1) The ViT visual encoder’s attention is more consistent over time, while the ResNet encoder’s attention map gradually
dilutes.

2) PackNet, as it splits the model capacity for different tasks, shows a more consistent attention map over the course of
learning.



Different Lifelong Learning Algorithms
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Fig. 22. Comparison of attention maps of different lifelong learning algorithms with RESNET-T on LIBERO-LONG. Each row shows the same state of a
task with different neural architectures. “Task 5” refers to the task put the white mug on the left plate and put the yellow and white mug on the right plate.
“Task 10” refers to the task put the yellow and white mug in the microwave and close it. The second row shows the policy that is trained on task 10 and gets
evaluated on task 5, showing the attention map differences in backward transfer.

Findings: Figure 22 shows the attention visualization of three lifelong learning algorithms on LIBERO-LONG with RESNET-
T on two tasks (task 5 and task 10). The first and third rows show the attention of the policy on the same task it has just
learned. While the second row shows the attention of the policy on the task it learned in the past. We observe that:

1) PACKNET shows more concentrated attention compared against ER and EWC (usually just a single mode).
2) ER shares similar attention map with EWC, but EWC performs much worse than ER. Therefore, attention can only

assist the analysis but cannot be treated as a criterion for performance prediction.



Different Neural Architectures
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Fig. 23. Comparison of attention maps of different neural architectures with ER on LIBERO-LONG. Each row shows the same state of a task with different
neural architectures. “Task 5” refers to the task put the white mug on the left plate and put the yellow and white mug on the right plate. “Task 10” refers to
the task put the yellow and white mug in the microwave and close it. The second row shows the policy that is trained on task 10 and gets evaluated on task
5, showing the attention map differences in backward transfer.

Findings: Figure 23 shows attention map comparisons of the three neural architectures on LIBERO-LONG with ER on two
tasks (task 5 and task 10). We observe that:

1) ViT has more concentrated attention than policies using ResNet.
2) When ResNet forgets, the attention is changing smoothly (more diluted). But for ViT, when it forgets, the attention can

completely shift to a different location.
3) When ResNet is combined with LSTM or a temporal transformer, the attention hints at the "course of future trajectory".

But we do not observe that when ViT is used as the encoder.



Different Task Ordering

1st 5th 10th

Canonical task order

Task order 1

Task order 3

8th 1st 9th

4th 2nd 9th

Fig. 24. Attention map comparison among different orderings with ER and RESNET-T on three selected tasks from LIBERO-LONG: put both the alphabet
soup and the tomato sauce in the basket, put the white mug on the left plate and put the yellow and white mug on the right plate, and put the yellow and
white mug in the microwave and close it. Each row corresponds to a specific sequence of task ordering, and the caption of each attention map indicates the
order of the task in that sequence.

Findings: Figure 24 shows attention map comparisons of three different task orderings. We show two immediately learned
tasks from LIBERO-LONG trained with ER and RESNET-T. We observe that:

1) As expected, learning the same task at different positions in the task stream results in different attention visualization.
2) There seems to be a trend that the policy has a more spread-out attention when it learns on tasks that are later in the

sequence.



With or Without Pretraining
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Fig. 25. Attention map comparison between models without/with pretrained models using RESNET-T and different lifelong learning algorithms on three
selected tasks from LIBERO-LONG.



Findings: Figure 25 shows attention map comparisons between models with/without pretrained models on LIBERO-LONG
with RESNET-T and all three LL algorithms. We observe that:

1) With pretraining, the policies attend to task-irrelevant regions more easily than those without pretraining.
2) Some of the policies with pretraining have better attention to the task-relevant features than their counterparts without

pertaining, but their performance remains lower (the last in the second row and the second in the fourth row). This
observation, again, shows that there is no positive correlation between semantically meaningful attention maps and the
policy’s performance.


